論文の概要: Solving the 2D Advection-Diffusion Equation using Fixed-Depth Symbolic Regression and Symbolic Differentiation without Expression Trees
- arxiv url: http://arxiv.org/abs/2411.00011v1
- Date: Fri, 18 Oct 2024 06:11:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:07.799731
- Title: Solving the 2D Advection-Diffusion Equation using Fixed-Depth Symbolic Regression and Symbolic Differentiation without Expression Trees
- Title(参考訳): 固定深さシンボリック回帰と表現木を含まないシンボリック微分を用いた2次元拡散方程式の解法
- Authors: Edward Finkelstein,
- Abstract要約: 本稿では,固定深さのシンボルレグレッションと表現木を含まない記号微分を用いた2次元対流拡散方程式の解法を提案する。
異なる初期条件と境界条件を持つ2つのケースに適用され、その精度と近似解を効率的に見つける能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel method for solving the 2D advection-diffusion equation using fixed-depth symbolic regression and symbolic differentiation without expression trees. The method is applied to two cases with distinct initial and boundary conditions, demonstrating its accuracy and ability to find approximate solutions efficiently. This framework offers a promising, scalable solution for finding approximate solutions to differential equations, with the potential for future improvements in computational performance and applicability to more complex systems involving vector-valued objectives.
- Abstract(参考訳): 本稿では,固定深さのシンボルレグレッションと表現木を含まない記号微分を用いた2次元対流拡散方程式の解法を提案する。
この方法は、初期条件と境界条件の異なる2つのケースに適用され、その精度と近似解を効率的に見つける能力を示す。
このフレームワークは、微分方程式の近似解を見つけるための有望でスケーラブルなソリューションを提供し、ベクトル値の目的を含むより複雑なシステムに将来の計算性能と適用可能性をもたらす。
関連論文リスト
- A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
提案手法の有効性は,Caputo-based distributed-order fractional differential equationsの数値実験を通じて検証した。
論文 参考訳(メタデータ) (2024-09-05T13:20:10Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
進化的微分方程式の発見は、より優先順位の低い方程式を得るための道具であることが証明された。
提案した比較手法は、バーガーズ方程式、波動方程式、コルテヴェーグ・ド・ブリーズ方程式といった古典的なモデル例で示される。
論文 参考訳(メタデータ) (2023-06-29T15:37:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
本研究では,高次元後方分布を推定するための新しい近似法を提案する。
このアプローチは、深層生成モデルを利用して、空間的に変化するパラメータを生成することができる事前モデルを学ぶ。
提案手法は自動微分方式で完全に実装できる。
論文 参考訳(メタデータ) (2023-02-22T06:48:10Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations [0.0]
本稿では、最新のMLツールを活用し、線形方程式系の反復解法をカスタマイズする。
その結果,従来の反復解法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-07-06T09:47:14Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
広く使われている1次サドル点最適化法は、帰納的導出時に同一の連続時間常微分方程式(ODE)を導出する。
しかし、これらの方法の収束特性は、単純な双線型ゲームでさえ質的に異なる。
いくつかのサドル点最適化法のための微分方程式モデルの設計に流体力学の研究フレームワークを採用する。
論文 参考訳(メタデータ) (2021-12-27T18:31:34Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
論文 参考訳(メタデータ) (2020-05-07T00:09:27Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
随伴感度法は 通常の微分方程式の勾配を
我々はこの手法を微分方程式に一般化し、時間効率と定数メモリ計算を可能にする。
提案手法は,ネットワークによって定義されたニューラルダイナミクスに適合し,50次元モーションキャプチャーデータセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2020-01-05T23:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。