論文の概要: A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
- arxiv url: http://arxiv.org/abs/2412.09009v1
- Date: Thu, 12 Dec 2024 07:22:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:58.759542
- Title: A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
- Title(参考訳): 初期境界値問題の一般化解を学習するための物理インフォームドトランスニューラル演算子
- Authors: Sumanth Kumar Boya, Deepak Subramani,
- Abstract要約: 我々は物理インフォームド・トランスフォーマー・ニューラル演算子(PINTO)を開発し、初期条件と境界条件を効率的に一般化する。
PINTOアーキテクチャは、エンジニアリングアプリケーションで使われる重要な方程式の解をシミュレートするために用いられる。
我々のモデルは、トレーニングコロケーションポイントに含まれない時間ステップにおける対流とバーガースの方程式を正確に解くことができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Initial boundary value problems arise commonly in applications with engineering and natural systems governed by nonlinear partial differential equations (PDEs). Operator learning is an emerging field for solving these equations by using a neural network to learn a map between infinite dimensional input and output function spaces. These neural operators are trained using a combination of data (observations or simulations) and PDE-residuals (physics-loss). A major drawback of existing neural approaches is the requirement to retrain with new initial/boundary conditions, and the necessity for a large amount of simulation data for training. We develop a physics-informed transformer neural operator (named PINTO) that efficiently generalizes to unseen initial and boundary conditions, trained in a simulation-free setting using only physics loss. The main innovation lies in our new iterative kernel integral operator units, implemented using cross-attention, to transform the PDE solution's domain points into an initial/boundary condition-aware representation vector, enabling efficient learning of the solution function for new scenarios. The PINTO architecture is applied to simulate the solutions of important equations used in engineering applications: advection, Burgers, and steady and unsteady Navier-Stokes equations (three flow scenarios). For these five test cases, we show that the relative errors during testing under challenging conditions of unseen initial/boundary conditions are only one-fifth to one-third of other leading physics informed operator learning methods. Moreover, our PINTO model is able to accurately solve the advection and Burgers equations at time steps that are not included in the training collocation points. The code is available at $\texttt{https://github.com/quest-lab-iisc/PINTO}$
- Abstract(参考訳): 初期境界値問題は、工学や非線形偏微分方程式 (PDE) によって支配される自然系の応用において一般的に発生する。
演算子学習は、ニューラルネットワークを用いて無限次元入力と出力関数空間の間の写像を学習することにより、これらの方程式を解く新しい分野である。
これらの神経オペレータは、データ(観測またはシミュレーション)とPDE-残留物(物理損失)を組み合わせて訓練される。
既存のニューラルアプローチの大きな欠点は、新しい初期/境界条件で再トレーニングすることの必要性と、トレーニングのための大量のシミュレーションデータの必要性である。
物理損失のみを用いたシミュレーションフリー環境で訓練した物理インフォームド・トランスフォーマー・ニューラル演算子(PINTO)を開発した。
主な革新は、PDEソリューションのドメインポイントを初期/境界条件対応表現ベクトルに変換するために、クロスアテンションを用いて実装された新しい反復カーネル積分演算子ユニットであり、新しいシナリオに対するソリューション関数の効率的な学習を可能にする。
PINTOアーキテクチャは、工学的応用で使われる重要な方程式の解をシミュレートするために応用される: 対流、バーガー、定常で不安定なナビエ・ストークス方程式(3つのフローシナリオ)。
これらの5つのテストケースにおいて、未確認初期/境界条件の挑戦条件下でのテストにおける相対誤差は、他の主要な物理情報処理者の学習方法の5分の1から3に過ぎなかった。
さらに、PINTOモデルでは、トレーニングコロケーションポイントに含まれない時間ステップにおける対流とバーガースの方程式を正確に解ける。
コードは$\texttt{https://github.com/quest-lab-iisc/PINTO}$で入手できる。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。