論文の概要: On consistent estimation of dimension values
- arxiv url: http://arxiv.org/abs/2412.13898v1
- Date: Wed, 18 Dec 2024 14:40:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:23:20.268924
- Title: On consistent estimation of dimension values
- Title(参考訳): 次元値の一貫した推定について
- Authors: Alejandro Cholaquidis, Antonio Cuevas, Beatriz Pateiro-López,
- Abstract要約: ユークリッド空間のコンパクト部分集合 S の次元を推定する問題を考える。
統計学的な意味では一貫性に重点を置いている。
- 参考スコア(独自算出の注目度): 45.52331418900137
- License:
- Abstract: The problem of estimating, from a random sample of points, the dimension of a compact subset S of the Euclidean space is considered. The emphasis is put on consistency results in the statistical sense. That is, statements of convergence to the true dimension value when the sample size grows to infinity. Among the many available definitions of dimension, we have focused (on the grounds of its statistical tractability) on three notions: the Minkowski dimension, the correlation dimension and the, perhaps less popular, concept of pointwise dimension. We prove the statistical consistency of some natural estimators of these quantities. Our proofs partially rely on the use of an instrumental estimator formulated in terms of the empirical volume function Vn (r), defined as the Lebesgue measure of the set of points whose distance to the sample is at most r. In particular, we explore the case in which the true volume function V (r) of the target set S is a polynomial on some interval starting at zero. An empirical study is also included. Our study aims to provide some theoretical support, and some practical insights, for the problem of deciding whether or not the set S has a dimension smaller than that of the ambient space. This is a major statistical motivation of the dimension studies, in connection with the so-called Manifold Hypothesis.
- Abstract(参考訳): 点のランダムなサンプルからユークリッド空間のコンパクト部分集合 S の次元を推定する問題を考える。
統計学的な意味では一貫性に重点を置いている。
すなわち、サンプルサイズが無限大に大きくなるとき、真の次元値に収束する文である。
多くの可利用次元の定義の中で、ミンコフスキー次元、相関次元、そしておそらくあまり一般的でない点次元の概念の3つの概念に焦点をあてた(統計的トラクタビリティの根拠に基づく)。
これらの量の自然推定器の統計的整合性を証明する。
我々の証明は、実験体積関数 Vn (r) で定式化された楽器推定器の使用に部分的に依存しており、サンプルからの距離が少なくとも r である点の集合のルベーグ測度として定義される。
特に、対象集合 S の真の体積関数 V(r) が 0 から始まるある区間の多項式である場合について検討する。
実証的研究も含んでいる。
本研究の目的は,集合 S が周囲空間の次元よりも小さいか否かを決定するための理論的支援と実践的な洞察を提供することである。
これは次元研究の大きな統計的動機であり、いわゆるマニフォールド仮説に関連している。
関連論文リスト
- Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds [14.183849746284816]
多様体仮説は、自然の高次元データが低次元多様体の周辺で支えられていることを言う。
統計的および学習に基づく手法の最近の成功は、この仮説を実証的に支持している。
我々は、一般化特性に直接関係する理論的な統計的複雑さの結果を提供する。
論文 参考訳(メタデータ) (2024-08-13T15:56:42Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
本研究では,多体格子系をアシラリー自由度に結合させることにより量子測度を実装するという概念について検討する。
従来より抽象的なモデルで見られたように, アンタングリング・エンタングリング測定によって引き起こされる遷移の証拠を見いだす。
論文 参考訳(メタデータ) (2023-03-13T13:06:40Z) - Intrinsic Dimensionality Estimation within Tight Localities: A
Theoretical and Experimental Analysis [0.0]
そこで本研究では,20個のサンプル点からなるタイトな局所性に対しても安定な局所ID推定手法を提案する。
実験結果から,提案手法の偏差は比較的小さいが, 偏差は比較的小さく, 試料径は最先端の推定値よりもはるかに小さいことがわかった。
論文 参考訳(メタデータ) (2022-09-29T00:00:11Z) - Tangent Space and Dimension Estimation with the Wasserstein Distance [10.118241139691952]
ユークリッド空間の滑らかなコンパクト部分多様体の近くで独立にサンプリングされた点の集合を考える。
我々は、その多様体の次元と接空間の両方を推定するために必要なサンプル点の数について数学的に厳密な境界を与える。
論文 参考訳(メタデータ) (2021-10-12T21:02:06Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
本稿では, 多様体仮説の検証と基礎となる多様体次元推定に対する新しいアプローチを提案する。
我々の幾何学的手法はミンコフスキー次元計算のためのよく知られたボックスカウントアルゴリズムのスパースデータの修正である。
実データセットの実験では、2つの手法の組み合わせに基づく提案されたアプローチが強力で効果的であることが示されている。
論文 参考訳(メタデータ) (2021-07-08T15:35:54Z) - Intrinsic Dimension Estimation [92.87600241234344]
内在次元の新しい推定器を導入し, 有限標本, 非漸近保証を提供する。
次に、本手法を適用して、データ固有の次元に依存するGAN(Generative Adversarial Networks)に対する新しいサンプル複雑性境界を求める。
論文 参考訳(メタデータ) (2021-06-08T00:05:39Z) - A Topological Approach to Inferring the Intrinsic Dimension of Convex
Sensing Data [0.0]
本稿では,アフィン空間の未知の部分集合を未知の準フィルタ関数によって測定する,共通の測定パラダイムを考える。
本論文では,自然仮定の下でデータの次元を推定する手法を開発する。
論文 参考訳(メタデータ) (2020-07-07T05:35:23Z) - Interpolation and Learning with Scale Dependent Kernels [91.41836461193488]
非パラメトリックリッジレス最小二乗の学習特性について検討する。
スケール依存カーネルで定義される推定器の一般的な場合を考える。
論文 参考訳(メタデータ) (2020-06-17T16:43:37Z) - Geometry of Similarity Comparisons [51.552779977889045]
空間形式の順序容量は、その次元と曲率の符号に関係していることを示す。
さらに重要なことは、類似性グラフ上で定義された順序拡散確率変数の統計的挙動が、その基礎となる空間形式を特定するのに利用できることである。
論文 参考訳(メタデータ) (2020-06-17T13:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。