論文の概要: Statistical entropy of quantum systems
- arxiv url: http://arxiv.org/abs/2412.15316v3
- Date: Tue, 01 Apr 2025 15:21:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 16:16:39.913878
- Title: Statistical entropy of quantum systems
- Title(参考訳): 量子系の統計エントロピー
- Authors: Smitarani Mishra, Shaon Sahoo,
- Abstract要約: 第一部分系の平均フォン・ノイマン(VN)エントロピーが$mathbbE(Ssb_VN)=ln(D_1)+O(D_2)$であることを示す。
この発見は、VNエントロピーとより大きな熱化量子系内のサブシステムの熱力学的エントロピー(TH)エントロピーの等価性を示すことから、重要な意味を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Let $D_1$ and $D_2$ be the Hilbert space dimensions of two subsystems of a quantum system of total Hilbert space dimension $D=D_1D_2$. In the thermodynamic limit (with $1\ll D_1 \ll D_2$), we know from the works of Page and Sen that the average von Neumann (VN) entropy of the first subsystem is $\mathbb{E}({S}^{sb}_{VN})=\ln(D_1)+O(D_1/D_2)$ if the full system is in a random pure state. Here, it is argued that this result can be strengthened for a thermalized quantum system. Consider the subspace $\mathcal{H}_E$ of the total Hilbert space corresponding to a narrow shell around the energy $E$. We find that the result of Page and Sen holds for each of these subspaces, that is, the VN entropy, when averaged over the states in $\mathcal{H}_E$, is given by $\overline{S}^{sb}_{VN} \approx \ln \widetilde{d}_1$, where $\widetilde{d}_1$ represents the dimension of the effective Hilbert space of the first subsystem relevant to $\mathcal{H}_E$. If $d_E = \dim{(\mathcal{H}_E)}$, we estimate that $\widetilde{d}_1 = D_1^\gamma$, where $\gamma = \ln (d_E) / \ln (D)$. This finding has significant implications, as it suggests an equivalence between the VN entropy and the thermodynamic (TH) entropy of a subsystem within a much larger thermalized quantum system. For completeness, we also discuss in this work the issue of equivalence between the VN entropy and TH entropy for isolated system (as a whole) and open system. For numerical demonstration of our important results, we here consider a one-dimensional spin-1/2 chain with next-nearest neighbor interactions.
- Abstract(参考訳): D_1$ と $D_2$ を、ヒルベルト空間の全次元$D=D_1D_2$ の量子系の2つの部分系のヒルベルト空間次元とする。
熱力学の極限(D_1 \ll D_2$1\ll D_1 \ll D_2$)では、ペイジ・アンド・センの研究から、第一部分系の平均フォン・ノイマン(VN)エントロピーが$\mathbb{E}({S}^{sb}_{VN})=\ln(D_1)+O(D_1/D_2)$であることがわかる。
ここでは、この結果は熱化された量子系のために強化することができると論じている。
エネルギー$E$ の周りの狭いシェルに対応するヒルベルト空間全体の部分空間 $\mathcal{H}_E$ を考える。
これらの部分空間、すなわち、VNエントロピーは、$\mathcal{H}_E$で平均化されたとき、$\overline{S}^{sb}_{VN} \approx \ln \widetilde{d}_1$で与えられる。
d_E = \dim{(\mathcal{H}_E)}$ とすると、$\widetilde{d}_1 = D_1^\gamma$, ここで $\gamma = \ln (d_E) / \ln (D)$ と推定する。
この発見は、VNエントロピーとより大きな熱化量子系内のサブシステムの熱力学的エントロピー(TH)エントロピーの等価性を示すことから、重要な意味を持つ。
完全性については、孤立系(全体)に対するVNエントロピーとTHエントロピーの同値性の問題についても論じる。
重要な結果の数値的な実演をするために、次のアネレスト近傍相互作用を持つ1次元スピン-1/2鎖を考える。
関連論文リスト
- Typical entanglement entropy in systems with particle-number conservation [3.692727995866036]
本研究では, 任意の粒子を含む系において, 典型的な二部交絡エントロピーを$langle S_Arangle_N$で計算する。
量子カオススピンとボソン系の高励起固有状態の絡み合いエントロピーについて述べる。
論文 参考訳(メタデータ) (2023-10-30T18:00:00Z) - Testing the Quantum of Entropy [0.0]
ボルツマン定数 k によって与えられるエントロピーの量子、およびより低いエントロピー極限 $S geq k ln 2$ について話すことができれば明らかになる。
論文 参考訳(メタデータ) (2023-07-19T11:34:54Z) - Quantum thermodynamics of de Sitter space [49.1574468325115]
拡大三次元空間に埋め込まれたオープン量子系の局所物理学を考える。
ハッブルパラメータが$h = $ const.を持つド・ジッター空間の場合、背景フィールドは物理的な熱風呂として機能する。
論文 参考訳(メタデータ) (2023-07-10T18:00:09Z) - Constructions of $k$-uniform states in heterogeneous systems [65.63939256159891]
一般の$k$に対して、異種系において$k$-一様状態を構成するための2つの一般的な方法を提案する。
我々は、各サブシステムの局所次元が素数となるような多くの新しい$k$一様状態を生成することができる。
論文 参考訳(メタデータ) (2023-05-22T06:58:16Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
エネルギー固有状態と熱密度行列の両方について量子フィッシャー情報(QFI)を計算する。
局所的なユニタリ変換の結果と比較した。
論文 参考訳(メタデータ) (2023-04-04T09:28:19Z) - Fast Rates for Maximum Entropy Exploration [52.946307632704645]
エージェントが未知の環境下で活動し、報酬が得られない場合、強化学習(RL)における探索の課題に対処する。
本研究では,最大エントロピー探索問題を2つの異なるタイプで検討する。
訪問エントロピーには、$widetildemathcalO(H3S2A/varepsilon2)$ sample complexity を持つゲーム理論アルゴリズムを提案する。
軌道エントロピーに対しては,次数$widetildemathcalO(mathrmpoly(S,)の複雑さのサンプルを持つ単純なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-14T16:51:14Z) - Quantum entropy thermalization [5.5586788751870175]
孤立量子多体系において、サブシステムのエントロピーは、長い時間で、同じエネルギーでサブシステムの熱力学的エントロピーと等しくなる。
ほぼ可積分なSachdev-Ye-Kitaevモデルに対するエントロピー熱化を純積状態で証明する。
論文 参考訳(メタデータ) (2023-02-20T18:51:21Z) - Bounds on Renyi entropy growth in many-body quantum systems [0.0]
我々は、$alpha$-Renyi entropies $S_alpha(t)$の成長に関する厳密な境界を証明している。
完全非局所ハミルトニアンに対しては、即時成長率 $|S'_alpha(t)|$ が $|S'_alpha(t)|$ よりも指数関数的に大きいことを示す。
論文 参考訳(メタデータ) (2022-12-14T19:00:01Z) - On Quantum Entropy and Excess Entropy Production in a System-Environment
Pure State [0.0]
最近導入された量子熱力学エントロピー $SQ_univ$ of a pure state of a Composite system-environment computer "universe" を探索する。
主焦点は「過剰なエントロピー生成」であり、量子エントロピーの変化は古典的なエントロピー自由エネルギー関係から予想されるよりも大きい。
論文 参考訳(メタデータ) (2022-11-25T14:57:44Z) - W entropy in hard-core system [5.156535834970047]
量子力学において、量子状態の進化は時間反転について対称であり、熱力学的エントロピーと量子エントロピーの間に矛盾をもたらす。
We study the W entropy, which is calculated from the probability distribution of the wave function on Wannier basis, in hard-core boson system。
論文 参考訳(メタデータ) (2022-10-01T03:24:10Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
開量子系は、FGKLS(Franke-Gorini-Kossakowski-Lindblad-Sudarshan)方程式に従うことができる。
我々はヒルベルト空間次元が 2$ である場合を徹底的に研究する。
論文 参考訳(メタデータ) (2022-04-16T07:03:54Z) - Conditions for realizing one-point interactions from a multi-layer
structure model [77.34726150561087]
N$平行な均質層からなるヘテロ構造は、その幅が0に縮まるにつれて、その極限において研究される。
問題は一次元で調べられ、シュル・オーディンガー方程式の断片的定数ポテンシャルが与えられる。
論文 参考訳(メタデータ) (2021-12-15T22:30:39Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
固有状態熱化仮説(ETH)は閉量子系における熱力学現象を理解する上で重要な役割を果たしている。
本稿では,ETHと高速熱化とグローバルギブス状態との厳密な関係を確立する。
この結果はカオス開量子系における有限時間熱化を説明する。
論文 参考訳(メタデータ) (2021-12-14T18:48:31Z) - Sublinear quantum algorithms for estimating von Neumann entropy [18.30551855632791]
我々は、確率分布のシャノンエントロピーと混合量子状態のフォン・ノイマンエントロピーの乗法係数$gamma>1$における推定値を得る問題を研究する。
我々は古典的確率分布と混合量子状態の両方を扱える量子純粋クエリーアクセスモデルに取り組んでおり、文献の中では最も一般的な入力モデルである。
論文 参考訳(メタデータ) (2021-11-22T12:00:45Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
エンタングルメントエントロピー(英: entanglement entropy)は、純粋状態の量子エンタングルメントのフォン・ノイマンエントロピーである。
エンタングルメント・エントロピーとエンタングルメント・蒸留との関係は設定のためだけに知られており、シングルコピー体制におけるエンタングルメント・エントロピーの意味はいまだオープンである。
この結果から, 量子情報処理に使用する二部質純状態における絡み合いの量は, 絡み合いエントロピーによって定量化され, かつ, 絡み合いの単一コピー構成においても, 運用上の意味を持つことが明らかとなった。
論文 参考訳(メタデータ) (2021-02-22T16:05:01Z) - Numerically "exact" simulations of entropy production in the fully
quantum regime: Boltzmann entropy versus von Neumann entropy [0.0]
スピン系によって生成されるエントロピーは、様々な温度で非マルコフ熱浴と強く結合する。
スピン系によって生成されるエントロピーは、様々な温度で非マルコフ熱浴と強く結合する。
スピン系によって生成されるエントロピーは、様々な温度で非マルコフ熱浴と強く結合する。
論文 参考訳(メタデータ) (2020-12-17T12:42:44Z) - Scattering data and bound states of a squeezed double-layer structure [77.34726150561087]
2つの平行な均質層からなる構造は、その幅が$l_j$と$l_j$であり、それらの間の距離が$r$を同時に0に縮めるように、極限において研究される。
非自明な有界状態の存在は、ディラックのデルタ関数の微分の形で圧縮ポテンシャルの特別な例を含む、スクイーズ極限で証明される。
有限系の有限個の有界状態から、一個の有界状態が圧縮された系で生き残るシナリオを詳述する。
論文 参考訳(メタデータ) (2020-11-23T14:40:27Z) - Emergence of a thermal equilibrium in a subsystem of a pure ground state
by quantum entanglement [0.9137554315375919]
我々は、サブシステム全体の純粋な基底状態において、サブシステム$A$と$B$の間の量子絡み合いが、サブシステム$A$において熱平衡を誘導できることを示した。
我々は、絡み合った純状態における量子揺らぎは、サブシステムにおける熱ゆらぎを模倣することができると主張している。
論文 参考訳(メタデータ) (2020-05-12T08:51:18Z) - Entropy production in the quantum walk [62.997667081978825]
我々は、エントロピー生産の観点から、直線上の離散時間量子ウォークの研究に焦点をあてる。
コインの進化は、ある有効温度で格子とエネルギーを交換するオープンな2段階のシステムとしてモデル化できると論じる。
論文 参考訳(メタデータ) (2020-04-09T23:18:29Z) - Multifractality meets entanglement: relation for non-ergodic extended
states [0.0]
波動関数が非エルゴードであっても、絡み合いエントロピーがエルゴード値を取ることを示す。
また,これらの揺らぎはエルゴード状態の狭い付近でエルゴード的振舞い,$D=1$であることを示す。
論文 参考訳(メタデータ) (2020-01-09T19:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。