論文の概要: The Spectral Barycentre of a Set of Graphs with Community Structure
- arxiv url: http://arxiv.org/abs/2502.00038v3
- Date: Tue, 19 Aug 2025 18:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 14:45:44.337106
- Title: The Spectral Barycentre of a Set of Graphs with Community Structure
- Title(参考訳): コミュニティ構造を持つグラフ集合のスペクトルバリーセント
- Authors: François G. Meyer,
- Abstract要約: Barycentreグラフは、グラフのトレーニングデータセットの平均トポロジと接続構造をキャプチャする「準グラフ」である。
正規化グラフラプラシアンの固有値を用いて定義されるマルチスケールスペクトル距離を用いる。
本研究では、バリセントグラフの正規化グラフラプラシアンの固有ベクトルに関する構造的制約を提案し、バリセントグラフがサンプルデータセットのグラフの位相的構造を継承することを保証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The notion of barycentre graph is of crucial importance for machine learning algorithms that process graph-valued data. The barycentre graph is a "summary graph" that captures the mean topology and connectivity structure of a training dataset of graphs. The construction of a barycentre requires the definition of a metric to quantify distances between pairs of graphs. In this work, we use a multiscale spectral distance that is defined using the eigenvalues of the normalized graph Laplacian. The eigenvalues -- but not the eigenvectors -- of the normalized Laplacian of the barycentre graph can be determined from the optimization problem that defines the barycentre. In this work, we propose a structural constraint on the eigenvectors of the normalized graph Laplacian of the barycentre graph that guarantees that the barycentre inherits the topological structure of the graphs in the sample dataset. The eigenvectors can be computed using an algorithm that explores the large library of Soules bases. When the graphs are random realizations of a balanced stochastic block model, then our algorithm returns a barycentre that converges asymptotically (in the limit of large graph size) almost-surely to the population mean of the graphs. We perform Monte Carlo simulations to validate the theoretical properties of the estimator; we conduct experiments on real-life graphs that suggest that our approach works beyond the controlled environment of stochastic block models.
- Abstract(参考訳): バリセントグラフの概念は、グラフ値のデータを処理する機械学習アルゴリズムにおいて重要である。
Barycentreグラフは、グラフのトレーニングデータセットの平均トポロジと接続構造をキャプチャする「準グラフ」である。
バリセントルの構成は、グラフのペア間の距離を定量化する計量の定義を必要とする。
本研究では、正規化グラフラプラシアンの固有値を用いて定義されるマルチスケールスペクトル距離を用いる。
バリセントレグラフの正規化ラプラシアンの固有ベクトルではなく固有値は、バリセントレを定義する最適化問題から決定することができる。
本研究では、バリセントグラフの正規化グラフラプラシアンの固有ベクトルに関する構造的制約を提案し、バリセントグラフがサンプルデータセットのグラフの位相的構造を継承することを保証している。
固有ベクトルは、Soulesベースの大きなライブラリを探索するアルゴリズムを用いて計算することができる。
グラフが平衡確率ブロックモデルのランダムな実現であるとき、我々のアルゴリズムは、(大きなグラフサイズの極限において)漸近的に収束するバリセントを、グラフの人口平均にほぼ確実に返す。
我々はモンテカルロシミュレーションを行い、推定器の理論的性質を検証し、確率ブロックモデルの制御された環境を超えて、我々のアプローチが機能することを示唆する実生活グラフの実験を行う。
関連論文リスト
- A Spectral Interpretation of Redundancy in a Graph Reservoir [51.40366905583043]
この研究はMRGNN(Multi resolution Reservoir Graph Neural Network)における貯留層の定義を再考する。
コンピュータグラフィックスにおける表面設計の分野で最初に導入されたフェアリングアルゴリズムに基づく変種を提案する。
この論文の中核的な貢献は、ランダムウォークの観点からのアルゴリズムの理論解析にある。
論文 参考訳(メタデータ) (2025-07-17T10:02:57Z) - Optimal Spectral Transitions in High-Dimensional Multi-Index Models [21.56591917674864]
本稿では,この問題に適したメッセージパッシング方式の線形化に基づくスペクトルアルゴリズムを提案する。
本研究では,提案手法が最適復元しきい値を達成することを示す。
数値実験と厳密な理論的枠組みによって支援され、我々はマルチインデックスモデルにおける弱い学習可能性の計算限界における臨界ギャップを橋渡しする。
論文 参考訳(メタデータ) (2025-02-04T18:15:51Z) - Scalable spectral representations for multi-agent reinforcement learning in network MDPs [13.782868855372774]
マルチエージェント制御の一般的なモデルであるNetwork Markov Decision Processes (MDPs)は、効率的な学習に重大な課題をもたらす。
まず、ネットワークMDPに対してスケーラブルなスペクトル局所表現を導出し、各エージェントの局所$Q$関数に対するネットワーク線形部分空間を誘導する。
我々は,連続的な状態対応ネットワークMDPのためのスケーラブルなアルゴリズムフレームワークを設計し,アルゴリズムの収束をエンドツーエンドで保証する。
論文 参考訳(メタデータ) (2024-10-22T17:45:45Z) - Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting [57.487936697747024]
実世界のデータ制約から生じる一般的なネットワーク推論問題は、その時間集約された隣接行列から動的ネットワークを推論する方法である。
本稿では,ネットワーク構造に対する最小限の変更の下でIPFの収束を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-28T20:24:56Z) - Visualization of Entanglement Geometry by Structural Optimization of
Tree Tensor Network [0.0]
木テンソルネットワークのための構造最適化アルゴリズムを提案する。
提案アルゴリズムは,スピン・シングレット対の空間的パターンを基底状態に可視化する。
論文 参考訳(メタデータ) (2024-01-29T09:39:24Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - An Unbiased Symmetric Matrix Estimator for Topology Inference under
Partial Observability [16.60607849384252]
本稿では,部分観測可能性の枠組みに基づくネットワークトポロジ推論の問題について考察する。
本稿では、ガウス雑音とラプラシアン結合則を持つ対称ネットワークトポロジーのための新しい非バイアス推定器を提案する。
ネットワーク構造を推定するために、ネットワーク推論ガウスアルゴリズムと呼ばれる効果的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-29T12:49:25Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - An End to End Network Architecture for Fundamental Matrix Estimation [14.297068346634351]
ステレオ画像から直接基本行列を推定する新しいエンドツーエンドネットワークアーキテクチャを提案する。
画像内の対応関係を見つけ、外乱の拒絶を行い、基本行列を計算するための異なるディープニューラルネットワークを、エンドツーエンドのネットワークアーキテクチャに統合する。
論文 参考訳(メタデータ) (2020-10-29T12:48:43Z) - Constant-Expansion Suffices for Compressed Sensing with Generative
Priors [26.41623833920794]
我々は、ベシッツではなく、リピート理論性の緩和された概念を満たすようなランダム関数に対する新しい一様濃度を証明した。
WDCは、この問題に関するすべての理論的保証の基本的な集中不等式であるため、我々の既知のすべての改善は、1つ、低ビットリカバリなど、先行した結果に結びついている。
論文 参考訳(メタデータ) (2020-06-07T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。