First Measurement of Entanglement Dynamics in the SYK Model using Quantum Computers
- URL: http://arxiv.org/abs/2503.18580v2
- Date: Wed, 16 Apr 2025 15:03:34 GMT
- Title: First Measurement of Entanglement Dynamics in the SYK Model using Quantum Computers
- Authors: Talal Ahmed Chowdhury, Kwangmin Yu, Raza Sabbir Sufian,
- Abstract summary: We present the first measurement of entanglement entropy growth under the SYK Hamiltonian using IBM's superconducting quantum computer as a programmable quantum platform.<n>This work paves the way for exploring chaotic quantum dynamics and establishes scalable methods for investigating complex entanglement growth on current quantum platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Sachdev-Ye-Kitaev (SYK) model, fundamental to quantum chaos, many-body physics, and holographic duality, exhibits both maximal chaos and exact solvability, yet its entanglement entropy has never been measured experimentally. Here, we present the first measurement of entanglement entropy growth under the SYK Hamiltonian using IBM's superconducting quantum computer as a programmable quantum platform. We implement an optimized swap-based many-body interference protocol tailored for limited qubit connectivity to measure entanglement entropy. Additionally, we enhance the randomized measurement protocol for entropy measurement by expanding the unitary ensemble, which increases the circuit volume and pushes the capability of the near-term devices. However, we tackle this challenge by employing a quantum multi-programming strategy that parallelizes circuit execution. This work paves the way for exploring chaotic quantum dynamics and establishes scalable methods for investigating complex entanglement growth on current quantum platforms.
Related papers
- Correcting and extending Trotterized quantum many-body dynamics [0.0]
We develop a hybrid ansatz that combines the strengths of quantum and classical methods.<n>We show how this hybrid ansatz can avoid SWAP gates in the quantum circuit.<n>We also show how it can extend the system size while keeping the number of qubits on the quantum device constant.
arXiv Detail & Related papers (2025-02-19T14:50:12Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.<n>We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.<n>We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum computation of conical intersections on a programmable superconducting quantum processor [10.064448021157139]
Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
arXiv Detail & Related papers (2024-02-20T04:12:40Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Measurement-based infused circuits for variational quantum eigensolvers [1.732837834702512]
Variational quantum eigensolvers (VQEs) are successful algorithms for studying physical systems on quantum computers.
In this work, we incorporate such ideas into traditional VQE circuits.
We showcase our approach on real superconducting quantum computers by performing VQE simulations of testbed systems.
arXiv Detail & Related papers (2023-05-30T16:45:54Z) - Simulating prethermalization using near-term quantum computers [1.2189422792863451]
We propose an experimental protocol for probing dynamics and equilibrium properties on near-term digital quantum computers.
We show that it is possible to study thermalization even with a relatively coarse Trotter decomposition of the Hamiltonian evolution of interest.
arXiv Detail & Related papers (2023-03-15T09:04:57Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Topological Order from Measurements and Feed-Forward on a Trapped Ion
Quantum Computer [0.0]
We show for the first time a constant-depth procedure for creating a toric code ground state in real-time.
We create a non-Abelian defect whose presence is confirmed by transmuting anyons via braiding.
This work clears the way towards creating complex topological orders in the lab.
arXiv Detail & Related papers (2023-02-03T18:50:57Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Large-scale quantum hybrid solution for linear systems of equations [0.0]
We introduce and implement a hybrid quantum algorithm for solving linear systems of equations with exponential speedup.
We solve experimentally a $217$-dimensional problem on superconducting IBMQ devices, a record for linear system solution on quantum computers.
arXiv Detail & Related papers (2020-03-28T11:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.