論文の概要: Parameterized Neural Ordinary Differential Equations: Applications to
Computational Physics Problems
- arxiv url: http://arxiv.org/abs/2010.14685v1
- Date: Wed, 28 Oct 2020 00:41:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 05:57:49.198771
- Title: Parameterized Neural Ordinary Differential Equations: Applications to
Computational Physics Problems
- Title(参考訳): パラメータ化ニューラル正規微分方程式:計算物理問題への応用
- Authors: Kookjin Lee and Eric J. Parish
- Abstract要約: 本研究では,NODE に付加的な ODE 入力パラメータを導入することにより,ニューラル常微分方程式(NODE)の拡張を提案する。
この拡張により、NODEは入力パラメータインスタンスによって指定された複数のダイナミクスを学習できる。
計算物理から重要なベンチマーク問題を用いてPNODEの有効性を示す。
- 参考スコア(独自算出の注目度): 5.885020100736158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes an extension of neural ordinary differential equations
(NODEs) by introducing an additional set of ODE input parameters to NODEs. This
extension allows NODEs to learn multiple dynamics specified by the input
parameter instances. Our extension is inspired by the concept of parameterized
ordinary differential equations, which are widely investigated in computational
science and engineering contexts, where characteristics of the governing
equations vary over the input parameters. We apply the proposed parameterized
NODEs (PNODEs) for learning latent dynamics of complex dynamical processes that
arise in computational physics, which is an essential component for enabling
rapid numerical simulations for time-critical physics applications. For this,
we propose an encoder-decoder-type framework, which models latent dynamics as
PNODEs. We demonstrate the effectiveness of PNODEs with important benchmark
problems from computational physics.
- Abstract(参考訳): 本研究では,NODE に付加的な ODE 入力パラメータを導入することにより,ニューラル常微分方程式(NODE)の拡張を提案する。
この拡張により、NODEは入力パラメータインスタンスによって指定された複数のダイナミクスを学習できる。
この拡張は、計算科学や工学の文脈で広く研究されているパラメータ化された常微分方程式の概念に着想を得ている。
提案するパラメータ化ノード(pnodes)を計算物理学における複雑な力学過程の潜性ダイナミクスの学習に応用し,時間的物理学応用のための高速数値シミュレーションを実現するための必須要素である。
そこで本研究では,遅延ダイナミクスをPNODEとしてモデル化したエンコーダデコーダ型フレームワークを提案する。
計算物理から重要なベンチマーク問題を用いてPNODEの有効性を示す。
関連論文リスト
- Solving Differential Equations using Physics-Informed Deep Equilibrium Models [4.237218036051422]
本稿では、常微分方程式(ODE)の初期値問題(IVP)を解決する物理インフォームド・ディープ平衡モデル(PIDEQ)を提案する。
この研究は、深層学習と物理に基づくモデリングをブリッジすることで、IVPを解くための計算技術を進歩させ、科学計算と工学の応用に寄与する。
論文 参考訳(メタデータ) (2024-06-05T17:25:29Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - HyperPINN: Learning parameterized differential equations with
physics-informed hypernetworks [32.095262903584725]
本稿では,ハイパーネットワークを用いてパラメータ化から微分方程式を解くニューラルネットワークを学習するHyperPINNを提案する。
我々は、PDEとODEの両方の実験で、このタイプのモデルが、小さなサイズを維持する微分方程式に対するニューラルネットワークの解をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-10-28T17:50:09Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。