論文の概要: Gaussian Process Priors for Systems of Linear Partial Differential
Equations with Constant Coefficients
- arxiv url: http://arxiv.org/abs/2212.14319v4
- Date: Thu, 2 Nov 2023 08:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 18:24:40.096800
- Title: Gaussian Process Priors for Systems of Linear Partial Differential
Equations with Constant Coefficients
- Title(参考訳): 定数係数を持つ線形偏微分方程式系のガウス過程優先
- Authors: Marc H\"ark\"onen, Markus Lange-Hegermann, Bogdan Rai\c{t}\u{a}
- Abstract要約: 偏微分方程式(PDE)は物理系をモデル化するための重要なツールである。
我々はガウス過程(GP)のファミリを提案し、これをEPGPと呼び、すべての実現がこのシステムの正確な解となるようにしている。
我々はPDEの3種類の系、熱方程式、波動方程式、マクスウェル方程式に対するアプローチを実証する。
- 参考スコア(独自算出の注目度): 4.327763441385371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial differential equations (PDEs) are important tools to model physical
systems and including them into machine learning models is an important way of
incorporating physical knowledge. Given any system of linear PDEs with constant
coefficients, we propose a family of Gaussian process (GP) priors, which we
call EPGP, such that all realizations are exact solutions of this system. We
apply the Ehrenpreis-Palamodov fundamental principle, which works as a
non-linear Fourier transform, to construct GP kernels mirroring standard
spectral methods for GPs. Our approach can infer probable solutions of linear
PDE systems from any data such as noisy measurements, or pointwise defined
initial and boundary conditions. Constructing EPGP-priors is algorithmic,
generally applicable, and comes with a sparse version (S-EPGP) that learns the
relevant spectral frequencies and works better for big data sets. We
demonstrate our approach on three families of systems of PDEs, the heat
equation, wave equation, and Maxwell's equations, where we improve upon the
state of the art in computation time and precision, in some experiments by
several orders of magnitude.
- Abstract(参考訳): 偏微分方程式(PDE)は物理システムをモデル化するための重要なツールであり、それらを機械学習モデルに含めることは物理知識を組み込む重要な方法である。
定数係数の線形PDE系の任意の系が与えられたとき、我々はガウス過程(GP)先行系の族を提案し、これをEPGPと呼び、すべての実現がこの系の正確な解である。
非線形フーリエ変換として働くehrenpreis-palamodov基本原理を適用し、gpsの標準スペクトル法を反映するgpカーネルを構築する。
提案手法は,ノイズ測定や初期値,境界値などのデータから線形PDEシステムの確率解を推定できる。
EPGPプライヤの構築はアルゴリズム的であり、一般に適用可能であり、関連するスペクトル周波数を学習し、ビッグデータに対してよりうまく機能するスパースバージョン(S-EPGP)が付属している。
我々はPDEの3種類の系、熱方程式、波動方程式、マクスウェル方程式について、いくつかの実験において計算時間と精度における技術の状態を改善する方法を示す。
関連論文リスト
- A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - Learning to correct spectral methods for simulating turbulent flows [6.110864131646294]
古典的数値手法と機械学習のハイブリッドにより、どちらの手法よりも大幅に改善できることが示される。
具体的には、流体力学の3つの共通偏微分方程式に対するML拡張スペクトル解法を開発する。
論文 参考訳(メタデータ) (2022-07-01T17:13:28Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - Adjoint-aided inference of Gaussian process driven differential
equations [0.8257490175399691]
本稿では,線形系の随伴性を用いて,GPとしてモデル化された強制関数を効率的に推論する方法を示す。
常微分方程式と偏微分方程式の両方の系に対するアプローチを実証する。
論文 参考訳(メタデータ) (2022-02-09T17:35:14Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。