論文の概要: Quantum Generative Modeling using Parameterized Quantum Circuits
- arxiv url: http://arxiv.org/abs/2303.16955v2
- Date: Thu, 31 Jul 2025 20:52:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.356444
- Title: Quantum Generative Modeling using Parameterized Quantum Circuits
- Title(参考訳): パラメタライズド量子回路を用いた量子生成モデリング
- Authors: Soumyadip Sarkar,
- Abstract要約: 量子生成モデルは、複雑な確率分布を学習し、再現するために、量子力学の本質的な確率論的性質を使用する。
本稿では,KL(Kullback-Leibler)分散損失とパラメータシフト勾配最適化を用いた3ビットガウス分布のモデル化を訓練した3ビット量子回路Bornマシンの実装について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum generative models use the intrinsic probabilistic nature of quantum mechanics to learn and reproduce complex probability distributions. In this paper, we present an implementation of a 3-qubit quantum circuit Born machine trained to model a 3-bit Gaussian distribution using a Kullback-Leibler (KL) divergence loss and parameter-shift gradient optimization. The variational quantum circuit consists of layers of parameterized rotations and entangling gates, and is optimized such that the Born rule output distribution closely matches the target distribution. We detail the mathematical formulation of the model distribution, the KL divergence cost function, and the parameter-shift rule for gradient evaluation. Training results on a statevector simulator show that the KL divergence is minimized to near zero, and the final generated distribution aligns quantitatively with the target probabilities. We analyze the convergence behavior and discuss the implications for scalability and quantum advantage. Our results demonstrate the feasibility of small-scale quantum generative learning and provide insight into the training dynamics of quantum circuit models.
- Abstract(参考訳): 量子生成モデルは、複雑な確率分布を学習し、再現するために、量子力学の本質的な確率論的性質を使用する。
本稿では,KL(Kullback-Leibler)分散損失とパラメータシフト勾配最適化を用いた3ビットガウス分布のモデル化を訓練した3ビット量子回路Bornマシンの実装を提案する。
変分量子回路は、パラメータ化された回転とエンタングルゲートの層で構成され、ボルン則出力分布がターゲット分布と密接に一致するように最適化されている。
モデル分布の数学的定式化、KL分散コスト関数、勾配評価のためのパラメータシフト則について詳述する。
状態ベクトルシミュレータのトレーニング結果から,KLの発散は0付近に最小化され,最終生成分布は目標確率と定量的に一致していることがわかった。
収束挙動を解析し,拡張性と量子優位性について考察する。
本結果は,小型量子生成学習の実現可能性を示し,量子回路モデルのトレーニング力学に関する知見を提供する。
関連論文リスト
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration [0.5679775668038153]
本稿では,量子ウォークに基づく手法を用いて,目標確率分布の高精度かつ効率性を実現する適応分布生成器を提案する。
本手法は,量子ウォークと離散時間量子ウォーク,特にスプリットステップの量子ウォークとそのエンタングル拡張を統合し,コインパラメータを動的にチューニングし,量子状態の進化を所望の分布へと導く。
論文 参考訳(メタデータ) (2025-04-18T07:53:03Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Optimal Quantum Circuit Design via Unitary Neural Networks [0.0]
本稿では,量子回路モデル表現に量子アルゴリズムの機能を合成する自動手法を提案する。
この訓練されたモデルが、元のアルゴリズムと同等の量子回路モデルを効果的に生成できることを実証する。
論文 参考訳(メタデータ) (2024-08-23T16:41:15Z) - Photonic quantum generative adversarial networks for classical data [0.0]
生成学習では、ターゲットデータの分布に従う新しいサンプルを作成するためにモデルが訓練される。
線形光回路とフォック空間符号化に基づく量子GANを提案する。
単一光子量子プロセッサ上で実験的にモデルのエンドツーエンドをトレーニングすることで,モデルが画像を生成することを実証する。
論文 参考訳(メタデータ) (2024-05-09T18:00:10Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
初期の量子コンピューティングの領域において重要な取り組みであるクロスプラットフォーム検証は、同一のアルゴリズムを実行する2つの不完全な量子デバイスとの類似性を特徴づけようと試みている。
本稿では,この課題におけるデータの形式化が2つの異なるモダリティを具現化する,革新的なマルチモーダル学習手法を提案する。
我々はこれらのモダリティから知識を独立して抽出するマルチモーダルニューラルネットワークを考案し、続いて融合操作により包括的データ表現を生成する。
論文 参考訳(メタデータ) (2023-11-07T04:35:03Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generative model for learning quantum ensemble via optimal transport
loss [0.9404723842159504]
量子アンサンブルを学習できる量子生成モデルを提案する。
提案したモデルは、量子デバイスのヘルスチェックのような幅広い応用の道を開く。
論文 参考訳(メタデータ) (2022-10-19T17:35:38Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
一般的な離散因子モデルから、偏りのない、独立なサンプルを確実に生成できる最初の方法を提案する。
本手法は多体相互作用と互換性があり,その成功確率は変数数に依存しない。
量子シミュレーションおよび実際の量子ハードウェアを用いた実験は,本手法が量子コンピュータ上でサンプリングおよびパラメータ学習を行うことができることを示す。
論文 参考訳(メタデータ) (2022-06-01T11:03:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
微分可能量子回路(DQC)としての確率分布の学習手法を提案する。
我々はDQCベースのモデルのトレーニングを行い、そこでデータは位相特徴写像で潜在空間にエンコードされ、次に変動量子回路が続く。
これにより、シングルショットの読み出しを使ってパラメタライズドディストリビューションからの高速サンプリングが可能になる。
論文 参考訳(メタデータ) (2022-02-16T18:55:48Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Generative Quantum Machine Learning [0.0]
この論文の目的は、新しい生成量子機械学習アルゴリズムを開発することである。
本稿では,パラメータ化量子回路で実現可能な量子生成逆数ネットワークと量子ボルツマンマシンの実装を紹介する。
論文 参考訳(メタデータ) (2021-11-24T19:00:21Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
2つの異なるオラクルモデルにおいて、量子回路Bornマシンの学習可能性について検討する。
我々はまず,超対数深度クリフォード回路の出力分布がサンプル効率良く学習できないという負の結果を示した。
より強力なオラクルモデル、すなわちサンプルに直接アクセスすると、局所的なクリフォード回路の出力分布は計算効率よくPACを学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:00:20Z) - Bosonic field digitization for quantum computers [62.997667081978825]
我々は、離散化された場振幅ベースで格子ボゾン場の表現に対処する。
本稿では,エラースケーリングを予測し,効率的な量子ビット実装戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T15:30:04Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Learning temporal data with variational quantum recurrent neural network [0.5658123802733283]
パラメタライズド量子回路を用いて時間データを学習する手法を提案する。
この研究は、時間データの学習に複雑な量子力学を利用する方法を提供する。
論文 参考訳(メタデータ) (2020-12-21T10:47:28Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Learnability and Complexity of Quantum Samples [26.425493366198207]
量子回路が与えられた場合、量子コンピュータは古典的コンピュータよりも出力分布を指数関数的に高速にサンプリングすることができる。
一定のトレーニング時間でnでスケールするトレーニングパラメータを持つモデルを用いて、基礎となる量子分布を学習できるだろうか?
本稿では,Deep Boltzmann Machine (DBM), Generative Adrial Networks (GANs), Long Short-Term Memory (LSTM), Autoregressive GANの4種類の生成モデルについて,深部ランダム回路で生成された量子データセットの学習について検討する。
論文 参考訳(メタデータ) (2020-10-22T18:45:25Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
我々は,非線型O(3)シグマモデルの固定点が,格子サイトあたり2キュービットしか持たないスピンモデルの量子相転移付近で再現可能であることを示す。
本稿では,弱い結合状態と量子臨界状態の両方において,断熱的基底状態の準備が複雑になる結果を得るためにトロッター法を適用した。
非単位ランダム化シミュレーション法に基づく量子アルゴリズムの提案と解析を行う。
論文 参考訳(メタデータ) (2020-06-28T23:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。