論文の概要: Physics-informed Neural Network Combined with Characteristic-Based Split
for Solving Navier-Stokes Equations
- arxiv url: http://arxiv.org/abs/2304.10717v1
- Date: Fri, 21 Apr 2023 03:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 16:08:47.349587
- Title: Physics-informed Neural Network Combined with Characteristic-Based Split
for Solving Navier-Stokes Equations
- Title(参考訳): Navier-Stokes方程式の解法に特性ベーススプリットを併用した物理インフォームニューラルネットワーク
- Authors: Shuang Hu and Meiqin Liu and Senlin Zhang and Shanling Dong and
Ronghao Zheng
- Abstract要約: 時間依存型Navier-Stokes方程式(N-S方程式)の解法として,物理インフォームドニューラルネットワーク(PINN)を提案する。
出力パラメータと対応する損失は分離されるので、出力パラメータ間の重みは考慮されない。
N-S方程式は有限要素法と比較して計算境界を持たないため, PINN は N-S 方程式を解くためにより厳密な境界条件を必要とする。
- 参考スコア(独自算出の注目度): 3.019221526077059
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, physics-informed neural network (PINN) based on
characteristic-based split (CBS) is proposed, which can be used to solve the
time-dependent Navier-Stokes equations (N-S equations). In this method, The
output parameters and corresponding losses are separated, so the weights
between output parameters are not considered. Not all partial derivatives
participate in gradient backpropagation, and the remaining terms will be
reused.Therefore, compared with traditional PINN, this method is a rapid
version. Here, labeled data, physical constraints and network outputs are
regarded as priori information, and the residuals of the N-S equations are
regarded as posteriori information. So this method can deal with both
data-driven and data-free problems. As a result, it can solve the special form
of compressible N-S equations -- -Shallow-Water equations, and incompressible
N-S equations. As boundary conditions are known, this method only needs the
flow field information at a certain time to restore the past and future flow
field information. We solve the progress of a solitary wave onto a shelving
beach and the dispersion of the hot water in the flow, which show this method's
potential in the marine engineering. We also use incompressible equations with
exact solutions to prove this method's correctness and universality. We find
that PINN needs more strict boundary conditions to solve the N-S equation,
because it has no computational boundary compared with the finite element
method.
- Abstract(参考訳): 本稿では,特性ベーススプリット(CBS)に基づく物理インフォームドニューラルネットワーク(PINN)を提案し,時間依存型ナビエ・ストークス方程式(N-S方程式)を解く。
本手法では,出力パラメータと対応する損失を分離し,出力パラメータ間の重みを考慮しない。
すべての部分微分が勾配バックプロパゲーションに関与しているわけではなく、残りの項が再利用される。
ここでは、ラベル付きデータ、物理的制約、およびネットワーク出力を事前情報とみなし、N-S方程式の残余を後続情報とみなす。
したがって、この方法はデータ駆動とデータフリーの両方の問題に対処できる。
結果として、圧縮性 n-s 方程式 ---シュロー水方程式と非圧縮性 n-s 方程式の特別な形式を解くことができる。
境界条件が知られているので、この方法は、過去と将来の流れ場情報を復元するために、一定時間にのみフローフィールド情報を必要とする。
本研究では,海浜への単独波の進行と流れ中の湯の分散を解明し,この手法の海洋工学における可能性を示す。
また、この方法の正しさと普遍性を証明するために、正確な解を持つ非圧縮方程式を用いる。
N-S方程式は有限要素法と比較して計算境界を持たないため, PINNはより厳密な境界条件を必要とする。
関連論文リスト
- Coupled Integral PINN for conservation law [1.9720482348156743]
The Physics-Informed Neural Network (PINN) は、様々な偏微分方程式を解く革新的な手法である。
本稿では,ニューラルネットワークを用いた積分解方程式の組込みを含む,結合統合型PINN手法を提案する。
論文 参考訳(メタデータ) (2024-11-18T04:32:42Z) - Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Domain decomposition-based coupling of physics-informed neural networks
via the Schwarz alternating method [0.0]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解を解き、推論するためのデータ駆動型ツールである。
本稿では,従来の数値モデルとPINNを相互に結合する手法として,シュワルツ交互法(Schwarz alternating method)を提案する。
論文 参考訳(メタデータ) (2023-11-01T01:59:28Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
ナビエ・ストークス方程式(Navier-Stokes equation)は、液体や空気などの流体の運動を記述する重要な偏微分方程式である。
AI技術の発展に伴い、非圧縮性ナビエ・ストークス方程式によって支配される流体力学をシミュレーションし、推論するために、ディープニューラルネットワークを統合するためにいくつかのアプローチが設計された。
本研究では,ニューラルネットワークとNavier-Stokes方程式に相当するランダム渦力学系を組み合わせたemphDeep Random Vortex Method (DRVM)を提案する。
論文 参考訳(メタデータ) (2022-06-20T04:58:09Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Extreme Theory of Functional Connections: A Physics-Informed Neural
Network Method for Solving Parametric Differential Equations [0.0]
本稿では、X-TFCと呼ばれるパラメトリック微分方程式(DE)に関わる問題を解くための物理インフォームド手法を提案する。
X-TFCはPINNとDeep-TFCとは異なるが、PINNとDeep-TFCはディープNNを使用し、X-TFCはシングルレイヤーNNまたはより正確にはExtreme Learning Machine, ELMを使用する。
論文 参考訳(メタデータ) (2020-05-15T22:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。