論文の概要: Solving Parametric PDEs with Radial Basis Functions and Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2404.06834v2
- Date: Fri, 12 Apr 2024 13:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 12:17:41.989187
- Title: Solving Parametric PDEs with Radial Basis Functions and Deep Neural Networks
- Title(参考訳): 放射基底関数とディープニューラルネットワークを用いたパラメトリックPDEの解法
- Authors: Guanhang Lei, Zhen Lei, Lei Shi, Chenyu Zeng,
- Abstract要約: POD-DNNはパラメトリック方程式に対する解多様体の低次元特性を利用する新しいアルゴリズムである。
数値実験では、POD-DNNはオンラインフェーズにおいて計算速度を大幅に高速化することを示した。
妥当な仮定の下では、POD-DNNによるパラメトリックマッピングの近似の複雑さについて、厳密な上限を導出する。
- 参考スコア(独自算出の注目度): 12.227294893496342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the POD-DNN, a novel algorithm leveraging deep neural networks (DNNs) along with radial basis functions (RBFs) in the context of the proper orthogonal decomposition (POD) reduced basis method (RBM), aimed at approximating the parametric mapping of parametric partial differential equations on irregular domains. The POD-DNN algorithm capitalizes on the low-dimensional characteristics of the solution manifold for parametric equations, alongside the inherent offline-online computational strategy of RBM and DNNs. In numerical experiments, POD-DNN demonstrates significantly accelerated computation speeds during the online phase. Compared to other algorithms that utilize RBF without integrating DNNs, POD-DNN substantially improves the computational speed in the online inference process. Furthermore, under reasonable assumptions, we have rigorously derived upper bounds on the complexity of approximating parametric mappings with POD-DNN, thereby providing a theoretical analysis of the algorithm's empirical performance.
- Abstract(参考訳): 本稿では,不規則領域におけるパラメトリック偏微分方程式のパラメトリックマッピングを近似することを目的とした,固有直交分解法(POD)削減基底法(RBM)の文脈において,ディープニューラルネットワーク(DNN)と放射基底関数(RBF)を併用した新しいアルゴリズムであるPOD-DNNを提案する。
POD-DNNアルゴリズムは、パラメータ方程式の解多様体の低次元特性と、RBMとDNNの本質的にオフラインの計算戦略を併用する。
数値実験では、POD-DNNはオンラインフェーズにおいて計算速度を大幅に高速化することを示した。
DNNを統合することなくRBFを利用する他のアルゴリズムと比較して、POD-DNNはオンライン推論プロセスにおける計算速度を大幅に改善する。
さらに、妥当な仮定の下では、POD-DNNとのパラメトリックマッピングの近似の複雑さに関する上限を厳格に導出し、アルゴリズムの経験的性能に関する理論的解析を行う。
関連論文リスト
- Parallel-in-Time Solutions with Random Projection Neural Networks [0.07282584715927627]
本稿では、常微分方程式の解法であるパラレアルの基本的な並列時間法の一つを考察し、ニューラルネットワークを粗いプロパゲータとして採用することにより拡張する。
提案アルゴリズムの収束特性を理論的に解析し,ローレンツ方程式やバーガースの方程式を含むいくつかの例に対して有効性を示す。
論文 参考訳(メタデータ) (2024-08-19T07:32:41Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - RAR-PINN algorithm for the data-driven vector-soliton solutions and
parameter discovery of coupled nonlinear equations [6.340205794719235]
本研究の目的は、結合された非線形方程式とその相互作用のベクトル-ソリトン解を予測する効果的なディープラーニングフレームワークを提供することである。
本稿では,残差ベース適応改良(RAR-PINN)アルゴリズムと組み合わせた物理インフォームドニューラルネットワーク(PINN)を提案する。
論文 参考訳(メタデータ) (2022-04-29T12:34:33Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。