論文の概要: On the Benefits of Memory for Modeling Time-Dependent PDEs
- arxiv url: http://arxiv.org/abs/2409.02313v2
- Date: Thu, 24 Apr 2025 15:16:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.98279
- Title: On the Benefits of Memory for Modeling Time-Dependent PDEs
- Title(参考訳): 時間依存型PDEのモデリングにおけるメモリの有用性について
- Authors: Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, Andrej Risteski,
- Abstract要約: 時間依存PDEのモデリングにメモリを使用する利点について検討する。
本稿では,最近の状態空間モデルを組み合わせたニューラル演算子アーキテクチャであるメモリニューラル演算子(MemNO)を紹介する。
MemNOはメモリ無しでベースラインを著しく上回り、テストエラーを最大6倍削減する。
- 参考スコア(独自算出の注目度): 35.86010060677811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving PDEs. For time-dependent PDEs, many approaches are Markovian -- the evolution of the trained system only depends on the current state, and not the past states. In this work, we investigate the benefits of using memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple (even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution. Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that combines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observation noise at train and test time, MemNO significantly outperforms the baselines without memory -- with up to 6x reduction in test error. Furthermore, we show that this benefit is particularly pronounced when the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we construct a challenging benchmark dataset consisting of such PDEs.
- Abstract(参考訳): データ駆動技術は、PDEを解くための従来の数値手法に代わる有望な代替手段として登場した。
時間に依存したPDEでは、多くのアプローチがマルコフ的であり、訓練されたシステムの進化は現在の状態にのみ依存し、過去の状態には依存しない。
本研究では、時間依存型PDEのモデリングにメモリを使用する利点について検討する。
モデル還元の森-Zwanzig理論に動機づけられた理論では、メモリを用いた解がマルコフ解よりも任意に優れているという単純な(たとえ線形であっても)PDEの例を理論的に示す。
さらに、最近の状態空間モデル(特にS4)とフーリエニューラル演算子(FNO)を組み合わせてメモリを効果的にモデル化する、ニューラル演算子アーキテクチャであるメモリニューラル演算子(MemNO)を導入する。
私たちは、PDEが低解像度で供給されたり、列車やテスト時に観測ノイズを含む場合、MemNOはメモリなしでベースラインを著しく上回り、テストエラーを最大6倍削減することを示した。
さらに、この利点は、PDEソリューションが顕著な高周波フーリエモード(例えば、低粘度流体力学)を持つ場合に特に顕著であり、これらのPDEからなる挑戦的なベンチマークデータセットを構築していることを示す。
関連論文リスト
- Flexible and Efficient Probabilistic PDE Solvers through Gaussian Markov Random Fields [23.654711580674885]
大規模非線形PDEにおいても,GPプリエントを利用して確率的PDE解法を実用化する方法を示す。
このアプローチはまた、共分散関数でモデル化できるものを超えて、柔軟で物理的に意味のある先行を可能にする。
論文 参考訳(メタデータ) (2025-03-11T11:53:21Z) - Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
データから偏微分方程式を発見するためのモデルであるメカニスティックPDEネットワークを提案する。
表現されたPDEは解決され、特定のタスクのためにデコードされる。
線形偏微分方程式に特化して、ネイティブ、GPU対応、並列、スパース、微分可能多重グリッドソルバを開発した。
論文 参考訳(メタデータ) (2025-02-25T17:21:44Z) - A Deep Learning approach for parametrized and time dependent Partial Differential Equations using Dimensionality Reduction and Neural ODEs [46.685771141109306]
時間依存・パラメトリック・(典型的には)非線形PDEに対する古典的数値解法と類似した自己回帰・データ駆動手法を提案する。
DRを活用することで、より正確な予測を提供するだけでなく、より軽量でより高速なディープラーニングモデルを提供できることを示す。
論文 参考訳(メタデータ) (2025-02-12T11:16:15Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
時間依存偏微分方程式(PDE)は、科学や工学においてユビキタスである。
ディープニューラルネットワークに基づくサロゲートへの関心が高まっている。
論文 参考訳(メタデータ) (2023-08-10T17:53:05Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Neural SDEs as Infinite-Dimensional GANs [18.07683058213448]
我々は、SDE の適合に対する現在の古典的アプローチが、(ワッサーシュタイン) GAN の特別な場合としてアプローチされることを示した。
我々は(現代の機械学習における)連続時間生成時系列モデルとしてニューラルSDEを得る。
論文 参考訳(メタデータ) (2021-02-06T19:59:15Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。