論文の概要: Learning Partial Differential Equations with Deep Parallel Neural Operators
- arxiv url: http://arxiv.org/abs/2409.19976v1
- Date: Mon, 30 Sep 2024 06:04:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:57:46.107771
- Title: Learning Partial Differential Equations with Deep Parallel Neural Operators
- Title(参考訳): 深層並列ニューラル演算子を用いた部分微分方程式の学習
- Authors: Qinglong Ma, Peizhi Zhao, Sen Wang, Tao Song,
- Abstract要約: 新たな手法は、出力間のマッピングを近似する手段として演算子を学ぶことである。
物理科学の実践的な問題では、偏微分方程式の数値解は複雑である。
偏微分方程式の解法を効率よく正確に解くために,DPNO(Deep parallel operator model)を提案する。
- 参考スコア(独自算出の注目度): 11.121415128908566
- License:
- Abstract: In recent years, Solving partial differential equations has shifted the focus of traditional neural network studies from finite-dimensional Euclidean spaces to generalized functional spaces in research. A novel methodology is to learn an operator as a means of approximating the mapping between outputs. Currently, researchers have proposed a variety of operator architectures. Nevertheless, the majority of these architectures adopt an iterative update architecture, whereby a single operator is learned from the same function space. In practical physical science problems, the numerical solutions of partial differential equations are complex, and a serial single operator is unable to accurately approximate the intricate mapping between input and output. So, We propose a deep parallel operator model (DPNO) for efficiently and accurately solving partial differential equations. DPNO employs convolutional neural networks to extract local features and map data into distinct latent spaces. Designing a parallel block of double Fourier neural operators to solve the iterative error problem. DPNO approximates complex mappings between inputs and outputs by learning multiple operators in different potential spaces in parallel blocks. DPNO achieved the best performance on five of them, with an average improvement of 10.5\%, and ranked second on one dataset.
- Abstract(参考訳): 近年、偏微分方程式の解法は、従来のニューラルネットワーク研究の焦点を有限次元ユークリッド空間から一般化汎函数空間へとシフトしている。
新たな手法は、出力間のマッピングを近似する手段として演算子を学ぶことである。
現在、研究者は様々なオペレーターアーキテクチャを提案している。
それでも、これらのアーキテクチャの大部分は反復的な更新アーキテクチャを採用しており、単一のオペレータは同じ関数空間から学習される。
物理科学の実践的な問題では、偏微分方程式の数値解は複雑であり、シリアル単一作用素は入力と出力の間の複雑な写像を正確に近似することはできない。
そこで本研究では,偏微分方程式の解法を効率よく,正確に解くためのDep parallel operator model (DPNO)を提案する。
DPNOは畳み込みニューラルネットワークを用いて局所的な特徴を抽出し、データを異なる潜在空間にマップする。
反復誤差問題を解決するために2重フーリエニューラル演算子の並列ブロックを設計する。
DPNOは、異なるポテンシャル空間における複数の演算子を並列ブロックで学習することで、入力と出力の間の複素写像を近似する。
DPNOは5つのデータセットで最高のパフォーマンスを達成し、平均10.5\%の改善を達成し、1つのデータセットで2位にランクインした。
関連論文リスト
- Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - D2NO: Efficient Handling of Heterogeneous Input Function Spaces with
Distributed Deep Neural Operators [7.119066725173193]
異種性を示す入力関数を扱うための新しい分散手法を提案する。
中央ニューラルネットワークは、すべての出力関数間で共有情報を処理するために使用される。
ニューラルネットワークが連続非線形作用素の普遍近似であることを示す。
論文 参考訳(メタデータ) (2023-10-29T03:29:59Z) - Hyena Neural Operator for Partial Differential Equations [9.438207505148947]
ディープラーニングの最近の進歩は、ニューラル演算子の使用を含む偏微分方程式を解くための新しいアプローチをもたらした。
この研究は、多層パーセプトロンによってパラメータ化される長い畳み込みフィルタを使用するHyenaと呼ばれるニューラル演算子を利用する。
この結果から,ハイエナは偏微分方程式解演算器の効率的かつ高精度なモデルとして機能することが示唆された。
論文 参考訳(メタデータ) (2023-06-28T19:45:45Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations [14.43135909469058]
本研究では,FNOにおけるフーリエ積分作用素を解析・一般化するための新しいテキスト型微分積分演算子(PDIO)を提案する。
提案モデルの有効性をDarcyフローとNavier-Stokes方程式を用いて実験的に検証した。
論文 参考訳(メタデータ) (2022-01-28T07:22:32Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。