論文の概要: Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods
- arxiv url: http://arxiv.org/abs/2410.06820v1
- Date: Fri, 11 Oct 2024 16:17:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:21:00.763021
- Title: Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods
- Title(参考訳): パラメトリックPDEのためのニューラルソルバーの学習と物理インフォームド法
- Authors: Lise Le Boudec, Emmanuel de Bezenac, Louis Serrano, Ramon Daniel Regueiro-Espino, Yuan Yin, Patrick Gallinari,
- Abstract要約: データに基づいて訓練された物理インフォームド反復アルゴリズムを用いて偏微分方程式(PDE)の解法を学習することを提案する。
本手法は,各PDEインスタンスに自動的に適応する勾配降下アルゴリズムの条件付けを学習する。
複数のデータセットに対する経験的実験により,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 14.791541465418263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed deep learning often faces optimization challenges due to the complexity of solving partial differential equations (PDEs), which involve exploring large solution spaces, require numerous iterations, and can lead to unstable training. These challenges arise particularly from the ill-conditioning of the optimization problem, caused by the differential terms in the loss function. To address these issues, we propose learning a solver, i.e., solving PDEs using a physics-informed iterative algorithm trained on data. Our method learns to condition a gradient descent algorithm that automatically adapts to each PDE instance, significantly accelerating and stabilizing the optimization process and enabling faster convergence of physics-aware models. Furthermore, while traditional physics-informed methods solve for a single PDE instance, our approach addresses parametric PDEs. Specifically, our method integrates the physical loss gradient with the PDE parameters to solve over a distribution of PDE parameters, including coefficients, initial conditions, or boundary conditions. We demonstrate the effectiveness of our method through empirical experiments on multiple datasets, comparing training and test-time optimization performance.
- Abstract(参考訳): 物理インフォームド深層学習は、大きな解空間を探索し、多くの反復を必要とし、不安定な訓練につながるような偏微分方程式(PDE)を解く複雑さのために、最適化の課題に直面していることが多い。
これらの課題は、特に損失関数の微分項によって生じる最適化問題の条件が悪くなることから生じる。
これらの問題に対処するために、データに基づいて訓練された物理インフォームド反復アルゴリズムを用いてPDEの解法を学ぶことを提案する。
提案手法は,各PDEインスタンスに自動的に適応し,最適化プロセスの大幅な高速化と安定化を実現し,物理認識モデルの高速収束を可能にする勾配降下アルゴリズムの条件付けを学習する。
さらに,従来の物理インフォームド手法は1つのPDEインスタンスを解くが,本手法はパラメトリックPDEに対処する。
具体的には, 物理損失勾配をPDEパラメータと統合し, 係数, 初期条件, 境界条件を含むPDEパラメータの分布を解く。
提案手法の有効性を,複数のデータセット上での実験実験により実証し,トレーニングとテスト時間最適化性能を比較した。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - Bi-level Physics-Informed Neural Networks for PDE Constrained
Optimization using Broyden's Hypergradients [29.487375792661005]
PDE制約最適化問題を解決するための新しい二段階最適化フレームワークを提案する。
内部ループ最適化では、PDE制約のみを解決するためにPINNを採用する。
外部ループに対しては,Implicit関数定理に基づく Broyden'simat 法を用いて新しい手法を設計する。
論文 参考訳(メタデータ) (2022-09-15T06:21:24Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers [26.444103444634994]
認識されたPDEが捉えない効果を補正することにより、機械学習が解の精度を向上させることができることを示す。
従来使用されていた学習手法は,学習ループにソルバを組み込む手法により大幅に性能が向上していることがわかった。
これにより、以前の補正を考慮に入れたリアルな入力分布がモデルに提供される。
論文 参考訳(メタデータ) (2020-06-30T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。