論文の概要: LES-SINDy: Laplace-Enhanced Sparse Identification of Nonlinear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2411.01719v1
- Date: Mon, 04 Nov 2024 00:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:45:51.806589
- Title: LES-SINDy: Laplace-Enhanced Sparse Identification of Nonlinear Dynamical Systems
- Title(参考訳): LES-SINDy:非線形力学系のラプラス化スパース同定
- Authors: Haoyang Zheng, Guang Lin,
- Abstract要約: 動的システム(LES-SINDy)のLaplace-Enhanced SparSe識別法を提案する。
LES-SINDy は微分と不連続項のより正確な近似を可能にする。
また、ラプラス領域における成長関数や数値誤差を効果的に処理する。
- 参考スコア(独自算出の注目度): 6.03891813540831
- License:
- Abstract: Sparse Identification of Nonlinear Dynamical Systems (SINDy) is a powerful tool for the data-driven discovery of governing equations. However, it encounters challenges when modeling complex dynamical systems involving high-order derivatives or discontinuities, particularly in the presence of noise. These limitations restrict its applicability across various fields in applied mathematics and physics. To mitigate these, we propose Laplace-Enhanced SparSe Identification of Nonlinear Dynamical Systems (LES-SINDy). By transforming time-series measurements from the time domain to the Laplace domain using the Laplace transform and integration by parts, LES-SINDy enables more accurate approximations of derivatives and discontinuous terms. It also effectively handles unbounded growth functions and accumulated numerical errors in the Laplace domain, thereby overcoming challenges in the identification process. The model evaluation process selects the most accurate and parsimonious dynamical systems from multiple candidates. Experimental results across diverse ordinary and partial differential equations show that LES-SINDy achieves superior robustness, accuracy, and parsimony compared to existing methods.
- Abstract(参考訳): 非線形力学系のスパース同定(SINDy)は、データ駆動による支配方程式の発見のための強力なツールである。
しかし、高次微分や不連続を含む複雑な力学系をモデル化する場合、特にノイズの存在下では問題が発生する。
これらの制限は応用数学や物理学の様々な分野に適用性を制限する。
これを軽減するために,非線形力学系(LES-SINDy)のLaplace-Enhanced SparSe同定を提案する。
時系列測定をラプラス変換を用いて時間領域からラプラス領域に変換し、部品による積分により、LES-SINDyは微分と不連続項のより正確な近似を可能にする。
また、ラプラス領域における非有界成長関数や数値誤差を効果的に処理し、識別プロセスにおける課題を克服する。
モデル評価プロセスは、複数の候補から最も正確で相似な力学系を選択する。
様々な常微分方程式および偏微分方程式による実験結果から、LES-SINDy は既存の手法に比べて頑健性、正確性、パシモニーに優れることが示された。
関連論文リスト
- Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
提案手法は, 3次元, 4次, 剛性方程式を含む, 様々な雑音レベルの微分方程式を探索する。
パラメータ推定は変動係数が小さい真の値に正確に収束し、ノイズに頑健性を示す。
論文 参考訳(メタデータ) (2024-10-13T21:48:51Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification [4.804365706049767]
我々は、低次モデル(ROM)を構築するためのデータ駆動型非侵入型フレームワークを提案する。
詳細は、縮小座標の分布を特定するための変分SINIで構成されている。
トレーニングされたオフラインで、特定されたモデルは、新しいパラメータインスタンスと、対応するフルタイムソリューションを計算するための新しい初期条件のためにクエリすることができる。
論文 参考訳(メタデータ) (2024-05-31T15:16:48Z) - Exact identification of nonlinear dynamical systems by Trimmed Lasso [0.0]
非線形力学系の同定は非線形力学(SINDy)アルゴリズムのスパース同定によって一般化されている。
E-SINDyは有限でノイズの多いデータを扱うモデル同定のために提案された。
本稿では,モデル(TRIM)のロバスト同定のためのトリムラッソが,E-SINDyに対して,より厳しい雑音,有限データ,複数線形性の下で正確なリカバリを実現することを実証する。
論文 参考訳(メタデータ) (2023-08-03T17:37:18Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Weak SINDy For Partial Differential Equations [0.0]
我々はWeak SINDy(WSINDy)フレームワークを偏微分方程式(PDE)の設定にまで拡張する。
弱い形状による点微分近似の除去は、ノイズフリーデータからモデル係数の効率的な機械的精度回復を可能にする。
我々は、いくつかの挑戦的なPDEに対して、WSINDyの堅牢性、速度、精度を実証する。
論文 参考訳(メタデータ) (2020-07-06T16:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。