論文の概要: Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2412.00225v1
- Date: Fri, 29 Nov 2024 19:35:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:58.884599
- Title: Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークを用いたパラメトリック部分微分方程式のメタラーニング損失関数
- Authors: Michail Koumpanakis, Ricardo Vilalta,
- Abstract要約: メタラーニングパラメトリック偏微分方程式 PDE をバーガー方程式と2次元熱方程式に適用する。
目的はメタ学習を用いてパラメトリックPDE毎に新たな損失関数を学習することである。
- 参考スコア(独自算出の注目度): 0.8287206589886881
- License:
- Abstract: This paper proposes a new way to learn Physics-Informed Neural Network loss functions using Generalized Additive Models. We apply our method by meta-learning parametric partial differential equations, PDEs, on Burger's and 2D Heat Equations. The goal is to learn a new loss function for each parametric PDE using meta-learning. The derived loss function replaces the traditional data loss, allowing us to learn each parametric PDE more efficiently, improving the meta-learner's performance and convergence.
- Abstract(参考訳): 本稿では, 一般化付加モデルを用いた物理インフォームドニューラルネットワーク損失関数の学習法を提案する。
メタラーニングパラメトリック偏微分方程式 PDE をバーガー方程式と2次元熱方程式に適用する。
目的はメタ学習を用いてパラメトリックPDE毎に新たな損失関数を学習することである。
得られた損失関数は従来のデータ損失を置き換え、パラメトリックPDEをより効率的に学習し、メタラーナーの性能と収束性を向上させる。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
本稿では、損失関数を用いて、PINNモデルが基礎となるPDEを強制しようとするのと同じように、リー点対称性をネットワークに通知するロス関数を提案する。
我々の対称性の損失は、リー群の無限小生成元がPDE解を保存することを保証する。
実験により,PDEのリー点対称性による誘導バイアスはPINNの試料効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-11-07T19:07:16Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial
Networks [1.0499611180329804]
本研究は、生成逆数ネットワークを用いた微分方程式の解法である微分方程式GAN(DEQGAN)を提案する。
DeQGAN は PINN よりも 平均二乗誤差が桁違いに小さくなることを示す。
また、DECGANは、一般的な数値法と競合する解の精度を達成できることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:39:47Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Meta-learning PINN loss functions [5.543220407902113]
本稿では,物理インフォームドニューラルネットワーク(PINN)損失関数のオフライン発見のためのメタラーニング手法を提案する。
パラメータ化偏微分方程式(PDE)に基づく多様なタスク分布に対応する勾配に基づくメタラーニングアルゴリズムを開発した。
この結果から,共有タスクのオフライン学習損失関数を用いることで,大幅な性能向上が達成できることが示唆された。
論文 参考訳(メタデータ) (2021-07-12T16:13:39Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Actor-Critic Algorithm for High-dimensional Partial Differential
Equations [1.5644600570264835]
我々は高次元非線形放物型偏微分方程式を解くためのディープラーニングモデルを開発した。
BSDEのマルコフ的特性は、ニューラルネットワークアーキテクチャの設計に利用されています。
PDEのいくつかのよく知られたクラスを解くことで、これらの改善を実証する。
論文 参考訳(メタデータ) (2020-10-07T20:53:24Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。