論文の概要: Calibrated Physics-Informed Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2502.04406v2
- Date: Tue, 10 Jun 2025 16:38:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 22:10:06.880242
- Title: Calibrated Physics-Informed Uncertainty Quantification
- Title(参考訳): Calibrated Physics-Informed Uncertainty Quantification
- Authors: Vignesh Gopakumar, Ander Gray, Lorenzo Zanisi, Timothy Nunn, Daniel Giles, Matt J. Kusner, Stanislas Pamela, Marc Peter Deisenroth,
- Abstract要約: 本稿では,モデルに依存しない物理情報を用いた共形予測フレームワークを提案する。
このフレームワークはラベル付きデータを必要としない保証された不確実性推定を提供する。
さらに,核融合炉におけるプラズマモデリングおよびショット設計のためのニューラルPDEモデルについて検証した。
- 参考スコア(独自算出の注目度): 16.985414812517252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating complex physical systems is crucial for understanding and predicting phenomena across diverse fields, such as fluid dynamics and heat transfer, as well as plasma physics and structural mechanics. Traditional approaches rely on solving partial differential equations (PDEs) using numerical methods, which are computationally expensive and often prohibitively slow for real-time applications or large-scale simulations. Neural PDEs have emerged as efficient alternatives to these costly numerical solvers, offering significant computational speed-ups. However, their lack of robust uncertainty quantification (UQ) limits deployment in critical applications. We introduce a model-agnostic, physics-informed conformal prediction (CP) framework that provides guaranteed uncertainty estimates without requiring labelled data. By utilising a physics-based approach, we can quantify and calibrate the model's inconsistencies with the physics rather than the uncertainty arising from the data. Our approach utilises convolutional layers as finite-difference stencils and leverages physics residual errors as nonconformity scores, enabling data-free UQ with marginal and joint coverage guarantees across prediction domains for a range of complex PDEs. We further validate the efficacy of our method on neural PDE models for plasma modelling and shot design in fusion reactors.
- Abstract(参考訳): 複雑な物理系のシミュレーションは、流体力学や熱伝達、プラズマ物理学や構造力学といった様々な分野における現象の理解と予測に不可欠である。
従来の手法は、計算コストが高く、しばしばリアルタイムアプリケーションや大規模シミュレーションでは著しく遅くなる数値法を用いて偏微分方程式(PDE)を解くことに依存していた。
ニューラルネットワークPDEは、これらのコストのかかる数値解法に代わる効率的な代替手段として登場し、計算速度が大幅に向上した。
しかしながら、堅牢な不確実性定量化(UQ)の欠如は、重要なアプリケーションへのデプロイメントを制限する。
ラベル付きデータを必要としない保証された不確実性推定を提供する,モデルに依存しない物理インフォームドコンフォメーション予測(CP)フレームワークを提案する。
物理に基づくアプローチを利用することで、データから生じる不確実性ではなく、モデルと物理の不整合を定量化し、キャリブレーションすることができる。
提案手法では、畳み込み層を有限差分ステンシルとして利用し、物理残差誤差を非整合性スコアとして活用することにより、様々な複雑なPDEに対して、予測領域をまたいだ境界被覆と結合被覆を保証したデータフリーUQを実現する。
核融合炉におけるプラズマモデリングおよびショット設計のためのニューラルPDEモデルに対する本手法の有効性をさらに検証した。
関連論文リスト
- Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
科学基盤モデル(SciFM)は、様々な領域にまたがる伝達可能な表現を学習するための有望なツールとして登場しつつある。
本稿では,PDE残差を単独の学習信号として,あるいはデータ損失と組み合わせて事前学習に組み込むことにより,限定的あるいは実用的でないトレーニングデータに補償することを提案する。
以上の結果から, PDE制約による事前学習は, 解データのみを訓練したモデルよりも, 一般化を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-03-24T19:12:39Z) - Adaptation of uncertainty-penalized Bayesian information criterion for parametric partial differential equation discovery [1.1049608786515839]
我々は、パラメトリックPDE発見問題を効率的に解くために、不確実性ペナル化ベイズ情報量規準(UBIC)の拡張を導入する。
UBICは、異なる時間的または空間的な点に対する定量化されたPDE不確実性を使用して、モデル選択における過度な適合を防止する。
拡張されたUBICは、ノイズの存在下であっても、実数とそれらの変動係数を正確に識別できることを示す。
論文 参考訳(メタデータ) (2024-08-15T12:10:50Z) - Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media [1.8416014644193066]
パラメタライズされた部分微分方程式(PDE)のためのサロゲート学習のための新しいデータ駆動型フレームワークを提案する。
確率論的学習目的(probabilistic, learning objective)は、重み付けされた残留物を用いてPDEを探索し、仮想データのソースを提供する。
これは、物理を意識した暗黙の解法と組み合わせられ、元のPDEのより粗い、離散化されたバージョンで構成されている。
論文 参考訳(メタデータ) (2024-05-29T12:01:49Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE
Discovery [3.065513003860786]
擬似偏微分方程式(PDE)を優先するパラメータ適応型不確実性補償ベイズ情報量規準(UBIC)を提案する。
UBICによる真のPDEの特定に成功していることを数値的に確認する。
BICスコアとモデル複雑度の間のトレードオフを改善するために観測データをノイズ化する興味深い効果を明らかにした。
論文 参考訳(メタデータ) (2023-08-20T14:36:45Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
ラベルなしでPDEを解くために、新しい物理制約ニューラルネットワーク(NN)アプローチが提案されている。
我々は,PDEの離散化残差に基づくNNの損失関数を,効率的で畳み込み演算子に基づくベクトル化実装により記述する。
本研究では, 定常拡散, 線形弾性, 非線形弾性に応用し, 提案フレームワークの性能と性能を示す。
論文 参考訳(メタデータ) (2021-01-13T04:57:51Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。