論文の概要: Control, Optimal Transport and Neural Differential Equations in Supervised Learning
- arxiv url: http://arxiv.org/abs/2503.15105v1
- Date: Wed, 19 Mar 2025 11:04:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 17:45:40.932488
- Title: Control, Optimal Transport and Neural Differential Equations in Supervised Learning
- Title(参考訳): 教師付き学習における制御・最適輸送・ニューラル微分方程式
- Authors: Minh-Nhat Phung, Minh-Binh Tran,
- Abstract要約: Ruiz-Balet and Zuazua (SIAM ReVIEW 2023)
著者は制御理論、最適輸送理論、および神経微分方程式の間の関係に関してオープンな問題を提起する。
本稿では,限界における真の動的最適輸送に収束する神経微分方程式の構成を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From the perspective of control theory, neural differential equations (neural ODEs) have become an important tool for supervised learning. In the fundamental work of Ruiz-Balet and Zuazua (SIAM REVIEW 2023), the authors pose an open problem regarding the connection between control theory, optimal transport theory, and neural differential equations. More precisely, they inquire how one can quantify the closeness of the optimal flows in neural transport equations to the true dynamic optimal transport. In this work, we propose a construction of neural differential equations that converge to the true dynamic optimal transport in the limit, providing a significant step in solving the formerly mentioned open problem.
- Abstract(参考訳): 制御理論の観点からは、神経微分方程式(ニューラルODE)は教師あり学習の重要な道具となっている。
Ruiz-Balet と Zuazua (SIAM REVIEW 2023) の基本的な研究において、著者らは制御理論、最適輸送理論、神経微分方程式の間の関係に関してオープンな問題を提起している。
より正確には、ニューラルトランスポート方程式の最適流れの真の動的最適輸送の近さを定量化する方法を問う。
本研究では,この限界における真の動的最適輸送に収束する神経微分方程式の構成を提案する。
関連論文リスト
- Proximal optimal transport divergences [6.6875717609310765]
不完全な畳み込みの定式化により,情報分岐と最適輸送距離を補間する新しい相違尺度である,近位最適輸送発散を導入する。
本研究では, 滑らかさ, 有界性, 計算的トラクタビリティなどの数学的性質を探求し, 原始双対の定式化と対角学習との関連性を確立する。
提案フレームワークは,生成モデル,分布最適化,確率空間における勾配学習のための新たな洞察と計算ツールを提供しながら,既存のアプローチを一般化する。
論文 参考訳(メタデータ) (2025-05-17T17:48:11Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
ニューラルネットワークの正規微分方程式(Neural ODEs)の学習には、各エポックにおける微分方程式の解法が必要であるため、計算コストが高い。
特に、コロケーションに基づく完全に離散化された定式化を採用し、大規模な非線形最適化にIPOPT-aソルバを用いる。
この結果から,(コロケーションをベースとした)同時ニューラルODE訓練パイプラインの可能性が示唆された。
論文 参考訳(メタデータ) (2025-02-21T18:10:26Z) - Convex Physics Informed Neural Networks for the Monge-Ampère Optimal Transport Problem [49.1574468325115]
補給業者から顧客への原料の最適輸送は、物流における問題である。
ここでは、対応する一般化モンジュ・アンペア方程式の解を求める物理情報ニューラルネットワーク法が提唱されている。
特に、損失関数における輸送境界条件の実施に焦点が当てられている。
論文 参考訳(メタデータ) (2025-01-17T12:51:25Z) - A Mathematical Analysis of Neural Operator Behaviors [0.0]
本稿では,ニューラルネットワークの動作を分析するための厳密な枠組みを提案する。
我々はそれらの安定性、収束性、クラスタリングダイナミクス、普遍性、一般化誤差に焦点を当てる。
我々は,ニューラル演算子に基づく手法の今後の設計のために,単一設定で明確かつ統一的なガイダンスを提供することを目指している。
論文 参考訳(メタデータ) (2024-10-28T19:38:53Z) - Optimal Transportation by Orthogonal Coupling Dynamics [0.0]
本稿では,プロジェクション型勾配勾配法に基づくモンゲ・カントロビッチ問題に対処する新しい枠組みを提案する。
マイクロダイナミクスは条件付き期待の概念に基づいて構築され、そこでは意見力学との関係を探求する。
提案手法は,計算性能がよいランダムマップを復元できることを実証する。
論文 参考訳(メタデータ) (2024-10-10T15:53:48Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - A minimax optimal control approach for robust neural ODEs [44.99833362998488]
我々は、頑健な制御の観点から、ニューラルなODEの敵対的訓練に対処する。
我々はポントリャーギンの最大原理の形で一階最適条件を導出する。
論文 参考訳(メタデータ) (2023-10-26T17:07:43Z) - A Computational Framework for Solving Wasserstein Lagrangian Flows [48.87656245464521]
一般に、最適密度経路は未知であり、これらの変動問題の解法は計算的に困難である。
本稿では,これらすべての問題に統一的な視点からアプローチする,新しいディープラーニングベースのフレームワークを提案する。
提案手法は, 単セル軌道推定における従来の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-16T17:59:54Z) - Physics-constrained neural differential equations for learning
multi-ionic transport [0.0]
我々は,ポリアミドナノ孔間のイオン輸送挙動を学習する物理インフォームド深層学習モデルを開発した。
ニューラル・ディファレンシャル・方程式を古典的閉包モデルと組み合わせて、ニューラル・フレームワークに直接帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-03-07T17:18:52Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Neural Conservation Laws: A Divergence-Free Perspective [36.668126758052814]
本稿では、微分形式の概念を用いて、分散のないニューラルネットワークを構築することを提案する。
これらのモデルが普遍的であることを証明し、任意の発散自由ベクトル場を表現するために使うことができる。
論文 参考訳(メタデータ) (2022-10-04T17:01:53Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Online Learning to Transport via the Minimal Selection Principle [2.3857747529378917]
決定変数が凸, 三次元オブジェクトであるオンライン学習輸送(OLT)問題について検討する。
我々は、平均場と離散化技術を用いてORT問題を解決するために、最小選択探索法(SoMLT)と呼ばれる新しい手法を導出した。
論文 参考訳(メタデータ) (2022-02-09T21:25:58Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。