論文の概要: Learning Green's Functions of Linear Reaction-Diffusion Equations with
Application to Fast Numerical Solver
- arxiv url: http://arxiv.org/abs/2105.11045v1
- Date: Sun, 23 May 2021 23:36:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:23:48.907269
- Title: Learning Green's Functions of Linear Reaction-Diffusion Equations with
Application to Fast Numerical Solver
- Title(参考訳): 線形反応拡散方程式のグリーン関数の学習と高速数値解法への応用
- Authors: Yuankai Teng, Xiaoping Zhang, Zhu Wang, Lili Ju
- Abstract要約: 線形反応拡散方程式のグリーン関数を教師なしで学習するための新しいニューラルネットワークGF-Netを提案する。
提案手法は任意の領域上の方程式のグリーン関数を求める際の課題を克服する。
- 参考スコア(独自算出の注目度): 9.58037674226622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations are often used to model various physical
phenomena, such as heat diffusion, wave propagation, fluid dynamics,
elasticity, electrodynamics and image processing, and many analytic approaches
or traditional numerical methods have been developed and widely used for their
solutions. Inspired by rapidly growing impact of deep learning on scientific
and engineering research, in this paper we propose a novel neural network,
GF-Net, for learning the Green's functions of linear reaction-diffusion
equations in an unsupervised fashion. The proposed method overcomes the
challenges for finding the Green's functions of the equations on arbitrary
domains by utilizing physics-informed approach and the symmetry of the Green's
function. As a consequence, it particularly leads to an efficient way for
solving the target equations under different boundary conditions and sources.
We also demonstrate the effectiveness of the proposed approach by experiments
in square, annular and L-shape domains.
- Abstract(参考訳): 偏微分方程式は、熱拡散、波動伝播、流体力学、弾性、電気力学、画像処理などの様々な物理現象をモデル化するためにしばしば用いられ、多くの解析的手法や伝統的な数値法が、その解法に広く用いられている。
本稿では, 深層学習が科学・工学研究に急速に与える影響に着想を得て, 線形反応拡散方程式のグリーン関数を教師なしで学習するための新しいニューラルネットワークGF-Netを提案する。
提案手法は, 物理インフォームドアプローチとグリーン関数の対称性を利用して, 任意の領域上の方程式のグリーン関数を求める際の課題を克服する。
結果として、これは特に、異なる境界条件とソースの下でターゲット方程式を解く効率的な方法につながる。
また,提案手法の有効性を正方形,環状型,l型領域で実証した。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - First principles physics-informed neural network for quantum
wavefunctions and eigenvalue surfaces [0.0]
本稿では,量子系のパラメータ固有値と固有関数曲面を求めるニューラルネットワークを提案する。
我々は水素分子イオンの解法に本手法を適用した。
論文 参考訳(メタデータ) (2022-11-08T23:22:42Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
オープン量子力学のシミュレーションのために,スペクトルグリーン関数に基づく新しい手法を提案する。
この形式主義は、場の量子論におけるグリーン関数の使用と顕著な類似性を示している。
本手法は,完全マスター方程式の解法に基づくシミュレーションと比較して計算コストを劇的に削減する。
論文 参考訳(メタデータ) (2020-06-04T09:41:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。