論文の概要: A Bayesian Framework for learning governing Partial Differential
Equation from Data
- arxiv url: http://arxiv.org/abs/2306.04894v1
- Date: Thu, 8 Jun 2023 02:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 16:45:37.124588
- Title: A Bayesian Framework for learning governing Partial Differential
Equation from Data
- Title(参考訳): データから部分微分方程式を学習するためのベイズ的枠組み
- Authors: Kalpesh More and Tapas Tripura and Rajdip Nayek and Souvik Chakraborty
- Abstract要約: 本稿では,変分ベイズとスパース線形回帰を組み合わせた偏微分方程式(PDE)の発見手法を提案する。
提案手法は,データからPDEを発見し,物理,工学,生物学などの分野への応用を期待できる方法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The discovery of partial differential equations (PDEs) is a challenging task
that involves both theoretical and empirical methods. Machine learning
approaches have been developed and used to solve this problem; however, it is
important to note that existing methods often struggle to identify the
underlying equation accurately in the presence of noise. In this study, we
present a new approach to discovering PDEs by combining variational Bayes and
sparse linear regression. The problem of PDE discovery has been posed as a
problem to learn relevant basis from a predefined dictionary of basis
functions. To accelerate the overall process, a variational Bayes-based
approach for discovering partial differential equations is proposed. To ensure
sparsity, we employ a spike and slab prior. We illustrate the efficacy of our
strategy in several examples, including Burgers, Korteweg-de Vries, Kuramoto
Sivashinsky, wave equation, and heat equation (1D as well as 2D). Our method
offers a promising avenue for discovering PDEs from data and has potential
applications in fields such as physics, engineering, and biology.
- Abstract(参考訳): 偏微分方程式 (PDE) の発見は、理論的手法と経験的手法の両方を含む難しい課題である。
この問題を解決するために機械学習アプローチが開発され、使用されているが、既存の手法ではノイズの存在下で基礎となる方程式を正確に識別することが難しいことが多いことに注意する必要がある。
本研究では,変分ベイズと疎線形回帰を組み合わせた新しいPDE発見手法を提案する。
PDE発見の問題は、予め定義された基底関数辞書から関連する基底を学習する問題として提起されている。
全体過程を加速するため,偏微分方程式を発見するための変分ベイズに基づくアプローチを提案する。
スパーシティを確保するために、私たちは前にスパイクとスラブを採用しています。
本稿では,Burgers,Krteweg-de Vries,Kramoto Sivashinsky,Wave equation,Heat equation (1Dおよび2D)など,いくつかの例で戦略の有効性について述べる。
提案手法は,データからPDEを発見し,物理,工学,生物学などの分野への応用を期待できる方法である。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Partial Differential Equations Meet Deep Neural Networks: A Survey [10.817323756266527]
科学と工学の問題は、数学的モデリングを通して偏微分方程式(PDE)の集合で表すことができる。
PDEに続くメカニズムベースの計算は、長い間、計算流体力学のようなトピックを研究する上で欠かせないパラダイムであった。
PDEを解く効果的な手段として、深層ニューラルネットワーク(DNN)が登場している。
論文 参考訳(メタデータ) (2022-10-27T07:01:56Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
Parsimony Enhanced Sparse Bayesian Learning (PeSBL) 法は非線形力学系の部分微分方程式 (PDE) を解析するために開発された。
数値ケーススタディの結果,多くの標準力学系のPDEをPeSBL法を用いて正確に同定できることが示唆された。
論文 参考訳(メタデータ) (2021-07-08T00:56:11Z) - Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers [26.444103444634994]
認識されたPDEが捉えない効果を補正することにより、機械学習が解の精度を向上させることができることを示す。
従来使用されていた学習手法は,学習ループにソルバを組み込む手法により大幅に性能が向上していることがわかった。
これにより、以前の補正を考慮に入れたリアルな入力分布がモデルに提供される。
論文 参考訳(メタデータ) (2020-06-30T18:00:03Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。