論文の概要: Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations
- arxiv url: http://arxiv.org/abs/2312.09215v3
- Date: Mon, 20 Jan 2025 11:08:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:16.454304
- Title: Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations
- Title(参考訳): 微分方程式を解くための自己適応型物理インフォームド量子機械学習
- Authors: Abhishek Setty, Rasul Abdusalamov, Felix Motzoi,
- Abstract要約: チェビシェフは、古典的および量子的ニューラルネットワークが微分方程式を解くための効率的なツールとして有望であることを示した。
我々は、このフレームワークを様々な問題に対して量子機械学習環境に適応し、一般化する。
その結果,量子デバイス上での微分方程式の短期的評価に対する有望なアプローチが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Chebyshev polynomials have shown significant promise as an efficient tool for both classical and quantum neural networks to solve linear and nonlinear differential equations. In this work, we adapt and generalize this framework in a quantum machine learning setting for a variety of problems, including the 2D Poisson's equation, second-order linear differential equation, system of differential equations, nonlinear Duffing and Riccati equation. In particular, we propose in the quantum setting a modified Self-Adaptive Physics-Informed Neural Network (SAPINN) approach, where self-adaptive weights are applied to problems with multi-objective loss functions. We further explore capturing correlations in our loss function using a quantum-correlated measurement, resulting in improved accuracy for initial value problems. We analyse also the use of entangling layers and their impact on the solution accuracy for second-order differential equations. The results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
- Abstract(参考訳): チェビシェフ多項式は、線形微分方程式と非線形微分方程式を解くための古典的および量子的ニューラルネットワークの双方にとって効率的なツールとして有意義であることを示した。
本研究では, 2次元ポアソン方程式, 2階線形微分方程式, 微分方程式系, 非線形ダッフィング, リカティ方程式などの様々な問題に対して, この枠組みを量子機械学習環境に適用し, 一般化する。
特に,自己適応型物理情報ニューラルネットワーク (SAPINN) の量子化において,自己適応型重み付けを多目的損失関数問題に適用する手法を提案する。
さらに、量子相関測定を用いて損失関数の相関関係を把握し、初期値問題の精度を向上する。
また,2次微分方程式の解の精度に及ぼす層間絡み合いの影響も分析した。
その結果,量子デバイス上での微分方程式の短期的評価に対する有望なアプローチが示唆された。
関連論文リスト
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
本稿では, 非線形常微分方程式の初期値問題を解くために, 繰り返し測定に基づく量子アルゴリズムを提案する。
古典ロジスティック系とローレンツ系に、積分可能かつカオス的条件の両方でこのアプローチを適用する。
論文 参考訳(メタデータ) (2024-10-04T18:06:12Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
本稿では,このような大規模方程式系を高精度に解くことを目的とした量子方法論の探索について述べる。
2次元,過渡的,非圧縮的,粘性,非線形結合バーガース方程式をテスト問題とする。
我々の研究結果は、我々の量子法が従来の手法に匹敵する精度で結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-09-05T04:42:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において, 非常によく機能することが示されている。
論文 参考訳(メタデータ) (2023-01-28T07:53:26Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
量子カーネル法を用いて微分方程式(DE)の解法を提案する。
量子モデルをカーネル関数の重み付け和として構成し、特徴写像を用いて変数を符号化し、モデル微分を表現する。
論文 参考訳(メタデータ) (2022-03-16T18:56:35Z) - Quantum Model-Discovery [19.90246111091863]
微分方程式を解くための量子アルゴリズムは、フォールトトレラントな量子コンピューティングシステムにおいて証明可能な優位性を示している。
我々は、短期量子コンピュータの適用性を、より一般的な科学的な機械学習タスクに拡張する。
本結果は,古典的および量子機械学習アプローチのインターフェースにおける量子モデル探索(QMoD)への有望な経路を示す。
論文 参考訳(メタデータ) (2021-11-11T18:45:52Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
本稿では,通常の微分方程式と偏微分方程式の両方の線形系に対して,一発の推論結果をもたらす伝達学習PINNの枠組みを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
論文 参考訳(メタデータ) (2021-10-21T17:14:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。