論文の概要: Generating synthetic data for neural operators
- arxiv url: http://arxiv.org/abs/2401.02398v2
- Date: Thu, 12 Sep 2024 15:40:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-13 22:12:50.467597
- Title: Generating synthetic data for neural operators
- Title(参考訳): ニューラル演算子のための合成データの生成
- Authors: Erisa Hasani, Rachel A. Ward,
- Abstract要約: 本稿では,PDEを数値的に解く必要のない合成機能トレーニングデータを生成する方法を提案する。
アイデアは単純だが,古典的な数値解法に依存しないニューラルPDE解法の開発の可能性を広げることを期待している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous developments in the recent literature show the promising potential of deep learning in obtaining numerical solutions to partial differential equations (PDEs) beyond the reach of current numerical solvers. However, data-driven neural operators all suffer from a similar problem: the data needed to train a network depends on classical numerical solvers such as finite difference or finite element, among others. In this paper, we propose a different approach to generating synthetic functional training data that does not require solving a PDE numerically. We draw a large number $N$ of independent and identically distributed 'random functions' $u_j$ from the underlying solution space (e.g., $H_0^1(\Omega)$) in which we know the solution lies according to classical theory. We then plug each such random candidate solution into the equation and get a corresponding right-hand side function $f_j$ for the equation, and consider $(f_j, u_j)_{j=1}^N$ as supervised training data for learning the underlying inverse problem $f \rightarrow u$. This `backwards' approach to generating training data only requires derivative computations, in contrast to standard `forward' approaches, which require a numerical PDE solver, enabling us to generate many data points quickly and efficiently. While the idea is simple, we hope this method will expand the potential for developing neural PDE solvers that do not depend on classical numerical solvers.
- Abstract(参考訳): 近年の文献における多くの発展は、偏微分方程式(PDE)の数値解を現在の数値解法の範囲を超えて得ることにおけるディープラーニングの有望な可能性を示している。
ネットワークを訓練するために必要なデータは、有限差分や有限要素といった古典的な数値解法に依存する。
本稿では、PDEを数値的に解く必要のない合成機能トレーニングデータを生成するための異なるアプローチを提案する。
独立かつ同値に分散された'ランダム関数'$u_j$を、古典理論に従って解が成り立つことを知るような解空間(例えば、$H_0^1(\Omega)$)から、多数の$N$の独立かつ同値な'ランダム関数'$u_j$を引き出す。
次に、これらのランダムな候補解を方程式に差し込み、その方程式に対して対応する右辺関数 $f_j$ を取得し、基礎となる逆問題 $f \rightarrow u$ を学ぶための教師付きトレーニングデータとして $(f_j, u_j)_{j=1}^N$ を考える。
トレーニングデータを生成するための"backwards"アプローチでは、標準的な"forward"アプローチとは対照的に、数値PDEソルバを必要とするため、多くのデータポイントを迅速かつ効率的に生成できる。
アイデアは単純だが,古典的な数値解法に依存しないニューラルPDE解法の開発の可能性を広げることを期待している。
関連論文リスト
- Scale-Consistent Learning for Partial Differential Equations [79.48661503591943]
本稿では,PDEのスケール一貫性特性に基づくデータ拡張手法を提案する。
次に、幅広いスケールをモデル化できるスケールインフォームド・ニューラル演算子を設計する。
スケール一貫性によって、1000ドルの$Re$でトレーニングされたモデルは、250から10000までの$Re$に一般化することができる。
論文 参考訳(メタデータ) (2025-07-24T21:29:52Z) - A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE基礎モデルは、ニューラルネットワークを使用して、複数の微分方程式への近似を同時に訓練する。
本稿では,変換器をベースとしたアーキテクチャを応用し,解演算子を近似した新しいマルチモーダル深層学習手法を提案する。
我々のアプローチは解釈可能な科学的テキスト記述を生成し、基礎となる力学と解の性質について深い洞察を提供する。
論文 参考訳(メタデータ) (2025-02-09T20:50:28Z) - Method of data forward generation with partial differential equations for machine learning modeling in fluid mechanics [1.9688252014450927]
本研究では偏微分方程式(PDE)を用いた高効率データフォワード生成法を提案する。
射影法に埋め込まれたPoisson Neural Network (Poisson-NN) と、圧縮不能なNavier-Stokes方程式を解くためのマルチグリッド数値シミュレーションに埋め込まれたウェーブレット変換畳み込みニューラルネットワーク (WTCNN) をそれぞれ提案する。
論文 参考訳(メタデータ) (2025-01-06T15:17:13Z) - Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations [5.308435208832696]
計算された解演算子から偏微分方程式系(PDE)への近似は、科学や工学の様々な分野において必要である。
十分なデータのサンプル化を必要とせず,複数の領域にまたがって一般化可能なPDEソリューション演算子を学習するために,少数の真理解場に潜伏したニューラル演算子を訓練することができることを提案する。
論文 参考訳(メタデータ) (2024-11-27T03:16:00Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
条件分布は機械学習の中心的な問題です
ペアデータとペアデータの両方を統合する新しい学習パラダイムを提案する。
我々のアプローチはまた、興味深いことに逆エントロピー最適輸送(OT)と結びついている。
論文 参考訳(メタデータ) (2024-10-03T16:12:59Z) - Active Learning for Neural PDE Solvers [18.665448858377694]
アクティブな学習は、モデルをより小さなトレーニングセットで同じ精度でサロゲートするのに役立ちます。
モジュール型かつアクティブな学習ベンチマークであるAL4PDEを紹介する。
ALは,ランダムサンプリングと比較して平均誤差を最大71%削減することを示した。
論文 参考訳(メタデータ) (2024-08-02T18:48:58Z) - On the estimation rate of Bayesian PINN for inverse problems [10.100602879566782]
物理インフォームドニューラルネットワーク(PINN)を用いた偏微分方程式(PDE)とその逆問題の解法は、物理学と機械学習のコミュニティにおいて急速に普及しているアプローチである。
我々は,PDEの解のベイズPINN推定器の挙動を$n$独立雑音測定から検討した。
論文 参考訳(メタデータ) (2024-06-21T01:13:18Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions [0.31317409221921133]
通常の微分方程式の非パラメトリック系を学ぶには、$d$変数の$d$関数を学ぶ必要がある。
明示的な定式化は、スパーシティや対称性といったシステム特性に関する追加の知識が得られない限り、$d$で2次的にスケールする。
本稿では,ベクトル値の再現Kernel Hilbert Spacesによる暗黙の定式化を用いた線形学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-16T21:49:36Z) - Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks [0.0]
グラフニューラルネットワーク(GNN)とスペクトルグラフ畳み込みを用いた2つの異なる時間非依存PDEに対する一般解演算子を設計する。
我々は、様々な形状と不均一性の有限要素ソルバからシミュレーションデータを用いてネットワークを訓練する。
有限要素メッシュの変動が多岐にわたる多様なデータセット上でのトレーニングが,優れた一般化結果を得るための鍵となる要素であることがわかった。
論文 参考訳(メタデータ) (2022-06-28T15:39:06Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
この研究では、ニューラルネットワーク、遺伝的アルゴリズム、適応的手法を組み合わせた新しいフレームワークが、これらの課題を同時に解決するために提案されている。
訓練されたニューラルネットワークを用いてデリバティブを計算し、大量のメタデータを生成し、スパースノイズデータの問題を解決する。
次に、遺伝的アルゴリズムを用いて、不完全候補ライブラリによるPDEと対応する係数の形式を発見する。
空間的あるいは時間的に異なる係数を持つパラメトリックPDEを発見するために、2段階適応法を導入する。
論文 参考訳(メタデータ) (2020-05-16T09:09:57Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。