論文の概要: On encoded quantum gate generation by iterative Lyapunov-based methods
- arxiv url: http://arxiv.org/abs/2409.01153v1
- Date: Mon, 2 Sep 2024 10:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:13:03.201142
- Title: On encoded quantum gate generation by iterative Lyapunov-based methods
- Title(参考訳): 反復リアプノフ法による符号化量子ゲート生成について
- Authors: Paulo Sergio Pereira da Silva, Pierre Rouchon,
- Abstract要約: 本稿では,量子ゲート生成の符号化問題について述べる。
emphReference Input Generation Algorithm (RIGA) はこの研究で一般化されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of encoded quantum gate generation is studied in this paper. The idea is to consider a quantum system of higher dimension $n$ than the dimension $\bar n$ of the quantum gate to be synthesized. Given two orthonormal subsets $\mathbb{E} = \{e_1, e_2, \ldots, e_{\bar n}\}$ and $\mathbb F = \{f_1, f_2, \ldots, f_{\bar n}\}$ of $\mathbb{C}^n$, the problem of encoded quantum gate generation consists in obtaining an open loop control law defined in an interval $[0, T_f]$ in a way that all initial states $e_i$ are steered to $\exp(\jmath \phi) f_i, i=1,2, \ldots ,\bar n$ up to some desired precision and to some global phase $\phi \in \mathbb{R}$. This problem includes the classical (full) quantum gate generation problem, when $\bar n = n$, the state preparation problem, when $\bar n = 1$, and finally the encoded gate generation when $ 1 < \bar n < n$. Hence, three problems are unified here within a unique common approach. The \emph{Reference Input Generation Algorithm (RIGA)} is generalized in this work for considering the encoded gate generation problem for closed quantum systems. A suitable Lyapunov function is derived from the orthogonal projector on the support of the encoded gate. Three case-studies of physical interest indicate the potential interest of such numerical algorithm: two coupled transmon-qubits, a cavity mode coupled to a transmon-qubit, and a chain of $N$ qubits, including a large dimensional case for which $N=10$.
- Abstract(参考訳): 本稿では,量子ゲート生成の符号化問題について述べる。
この考え方は、合成される量子ゲートの次元$\bar n$よりも高次元$n$の量子系を考えることである。
2つの正則部分集合 $\mathbb{E} = \{e_1, e_2, \ldots, e_{\bar n}\}$ と $\mathbb F = \{f_1, f_2, \ldots, f_{\bar n}\}$ of $\mathbb{C}^n$ が与えられたとき、符号化された量子ゲート生成の問題は、すべての初期状態 $e_i$ が $\exp(\jmath \phi) f_i, i=1,2, \ldots ,\bar n$ にステアされるように、間隔 $[0, T_f]$ で定義された開ループ制御則を得ることである。
この問題には古典的な(完全な)量子ゲート生成問題、$\bar n = n$、$\bar n = 1$、$ 1 < \bar n < n$ のエンコードゲート生成問題が含まれる。
したがって、ここでは3つの問題が共通のアプローチで統一される。
閉量子系における符号化ゲート生成問題を考えるために, RIGA (emph{Reference Input Generation Algorithm) が一般化される。
適切なリャプノフ函数は、符号化ゲートの支持上の直交射影から導かれる。
2つの結合トランスモン量子ビット、トランスモン量子ビットに結合したキャビティモード、およびN=10$の大きい次元ケースを含む1列のN$量子ビットである。
関連論文リスト
- Incompressibility and spectral gaps of random circuits [2.359282907257055]
可逆回路と量子回路は、交互群 $mathrmAlt (2n)$ とユニタリ群 $mathrmSU (2n)$ のランダムウォークを形成する。
ランダム可逆回路のギャップは、すべての$tgeq 1$に対して$Omega(n-3)$であり、ランダム量子回路のギャップは$Omega(n-3)$ for $t leq Theta(2n/2)$であることを示す。
論文 参考訳(メタデータ) (2024-06-11T17:23:16Z) - Quantum State Learning Implies Circuit Lower Bounds [2.2667044928324747]
状態トモグラフィー、擬似ランダム性、量子状態、回路下界の接続を確立する。
わずかに自明な量子状態トモグラフィーアルゴリズムでさえも量子状態合成に関する新しい言明に繋がることを示した。
論文 参考訳(メタデータ) (2024-05-16T16:46:27Z) - Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates [40.56175933029223]
本稿では,一様制御ゲート実装のための2種類の定数深度構造を提案する。
我々は、リードオンリーおよびリードライトメモリデバイスの量子対数に対して、一定の深さの回路を得る。
論文 参考訳(メタデータ) (2023-08-16T17:54:56Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
量子順序付き二項決定図($OBDD$)モデルについて検討する。
入力変数の任意の順序で、OBDDの下位境界と上位境界を証明します。
read$k$-times Ordered Binary Decision Diagrams (k$-OBDD$)の幅の階層を拡張します。
論文 参考訳(メタデータ) (2022-04-22T12:37:56Z) - Optimal (controlled) quantum state preparation and improved unitary
synthesis by quantum circuits with any number of ancillary qubits [20.270300647783003]
制御量子状態準備(CQSP)は、与えられた$n$-qubit状態に対するすべての$iin 0,1k$に対して、$|irangle |0nrangleから |irangle |psi_irangle $への変換を提供することを目的としている。
我々は、深さ$Oleft(n+k+frac2n+kn+k+mright)$とサイズ$Oleft(2n+kright)$のCQSPを実装するための量子回路を構築する。
論文 参考訳(メタデータ) (2022-02-23T04:19:57Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
しきい値定理は、フォールトトレラント量子計算の理論における基本的な結果である。
振幅雑音を伴う耐故障性量子計算の最大長に対する指数的上限を証明した。
論文 参考訳(メタデータ) (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
低忠実度状態におけるノイズランダム量子回路の測定結果の分布について検討する。
十分に弱くユニタリな局所雑音に対して、一般的なノイズ回路インスタンスの出力分布$p_textnoisy$間の相関(線形クロスエントロピーベンチマークで測定)は指数関数的に減少する。
ノイズが不整合であれば、出力分布は、正確に同じ速度で均一分布の$p_textunif$に近づく。
論文 参考訳(メタデータ) (2021-11-29T19:26:28Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
この問題は量子アルゴリズム設計、ハミルトニアンシミュレーション、量子機械学習において基本的な重要性を持っているが、その回路深さと大きさの複雑さは、アシラリー量子ビットが利用可能である時点では未解決のままである。
本稿では,$psi_vrangle$を奥行きで作成できる$m$Acillary qubitsを用いた量子回路の効率的な構築について検討する。
我々の回路は決定論的であり、状態を準備し、正確にユニタリを実行し、アシラリー量子ビットを厳密に利用し、深さは幅広いパラメータ状態において最適である。
論文 参考訳(メタデータ) (2021-08-13T09:47:11Z) - Partially Concatenated Calderbank-Shor-Steane Codes Achieving the
Quantum Gilbert-Varshamov Bound Asymptotically [36.685393265844986]
我々は,量子-Omega-Varshamovを有界に達成する量子誤り訂正符号の新たなファミリを構築する。
$mathscrQ$は$O(N)$とdeep $O(sqrtN)$の回路で非常に効率的に符号化できる。
$mathscrQ$は$O(sqrtN)$timeで並列に復号することもできる。
論文 参考訳(メタデータ) (2021-07-12T03:27:30Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
我々は、出力確率を2-Omega(nlogn)$以内に近似する非集中階層の理論的な複雑さを証明している。
この硬さは、任意の(固定された)回路の任意の開近傍に拡張され、自明なゲートを持つ回路を含むことを示す。
論文 参考訳(メタデータ) (2021-02-03T09:20:32Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。