論文の概要: Physics-Informed Quantum Machine Learning for Solving Partial
Differential Equations
- arxiv url: http://arxiv.org/abs/2312.09215v1
- Date: Thu, 14 Dec 2023 18:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 20:26:13.256375
- Title: Physics-Informed Quantum Machine Learning for Solving Partial
Differential Equations
- Title(参考訳): 物理インフォームド量子機械学習による偏微分方程式の解法
- Authors: Abhishek Setty, Rasul Abdusalamov, Mikhail Itskov
- Abstract要約: 観測可能量の変化として、パウリ-Z作用素の和に対するテンソル積を提案する。
このアイデアは、リカティ方程式の複素力学の解法で検証されている。
2次元ポアソン方程式の解法として,多変数関数を近似する新しい量子回路構造を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we solve differential equations using quantum Chebyshev feature
maps. We propose a tensor product over a summation of Pauli-Z operators as a
change in the measurement observables resulting in improved accuracy and
reduced computation time for initial value problems processed by floating
boundary handling. This idea has been tested on solving the complex dynamics of
a Riccati equation as well as on a system of differential equations.
Furthermore, a second-order differential equation is investigated in which we
propose adding entangling layers to improve accuracy without increasing the
variational parameters. Additionally, a modified self-adaptivity approach of
physics-informed neural networks is incorporated to balance the multi-objective
loss function. Finally, a new quantum circuit structure is proposed to
approximate multivariable functions, tested on solving a 2D Poisson's equation.
- Abstract(参考訳): 本研究では,量子チェビシェフ特徴写像を用いて微分方程式を解く。
本研究では,パウリZ演算子の和に対するテンソル積を測定可観測値の変化として提案し,フローティング境界処理による初期値問題に対する精度の向上と計算時間短縮を実現した。
このアイデアは、リッカティ方程式の複素力学や微分方程式の系を解くために試されてきた。
さらに, 2次微分方程式について検討し, 変動パラメータを増大させることなく, エンタングル層を追加して精度を向上させることを提案する。
さらに,多目的損失関数のバランスをとるために,物理形ニューラルネットワークの修正自己適応アプローチが組み込まれている。
最後に、2次元ポアソン方程式の解法で検証された多変数関数を近似する新しい量子回路構造を提案する。
関連論文リスト
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
本稿では, 非線形常微分方程式の初期値問題を解くために, 繰り返し測定に基づく量子アルゴリズムを提案する。
古典ロジスティック系とローレンツ系に、積分可能かつカオス的条件の両方でこのアプローチを適用する。
論文 参考訳(メタデータ) (2024-10-04T18:06:12Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
本稿では,このような大規模方程式系を高精度に解くことを目的とした量子方法論の探索について述べる。
2次元,過渡的,非圧縮的,粘性,非線形結合バーガース方程式をテスト問題とする。
我々の研究結果は、我々の量子法が従来の手法に匹敵する精度で結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-09-05T04:42:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において, 非常によく機能することが示されている。
論文 参考訳(メタデータ) (2023-01-28T07:53:26Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
量子カーネル法を用いて微分方程式(DE)の解法を提案する。
量子モデルをカーネル関数の重み付け和として構成し、特徴写像を用いて変数を符号化し、モデル微分を表現する。
論文 参考訳(メタデータ) (2022-03-16T18:56:35Z) - Quantum Model-Discovery [19.90246111091863]
微分方程式を解くための量子アルゴリズムは、フォールトトレラントな量子コンピューティングシステムにおいて証明可能な優位性を示している。
我々は、短期量子コンピュータの適用性を、より一般的な科学的な機械学習タスクに拡張する。
本結果は,古典的および量子機械学習アプローチのインターフェースにおける量子モデル探索(QMoD)への有望な経路を示す。
論文 参考訳(メタデータ) (2021-11-11T18:45:52Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
本稿では,通常の微分方程式と偏微分方程式の両方の線形系に対して,一発の推論結果をもたらす伝達学習PINNの枠組みを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
論文 参考訳(メタデータ) (2021-10-21T17:14:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。