論文の概要: SymbolFit: Automatic Parametric Modeling with Symbolic Regression
- arxiv url: http://arxiv.org/abs/2411.09851v1
- Date: Fri, 15 Nov 2024 00:09:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:00.007026
- Title: SymbolFit: Automatic Parametric Modeling with Symbolic Regression
- Title(参考訳): SymbolFit:シンボリック回帰を用いた自動パラメトリックモデリング
- Authors: Ho Fung Tsoi, Dylan Rankin, Cecile Caillol, Miles Cranmer, Sridhara Dasu, Javier Duarte, Philip Harris, Elliot Lipeles, Vladimir Loncar,
- Abstract要約: シンボリック回帰を用いてパラメトリックモデリングを自動化するフレームワークであるSybolFitを導入し,データに適合する関数の機械探索を行う。
本手法はCERN大型ハドロン衝突型加速器における高エネルギー物理実験におけるデータ解析応用において実証された。
- 参考スコア(独自算出の注目度): 1.2662552408022727
- License:
- Abstract: We introduce SymbolFit, a framework that automates parametric modeling by using symbolic regression to perform a machine-search for functions that fit the data, while simultaneously providing uncertainty estimates in a single run. Traditionally, constructing a parametric model to accurately describe binned data has been a manual and iterative process, requiring an adequate functional form to be determined before the fit can be performed. The main challenge arises when the appropriate functional forms cannot be derived from first principles, especially when there is no underlying true closed-form function for the distribution. In this work, we address this problem by utilizing symbolic regression, a machine learning technique that explores a vast space of candidate functions without needing a predefined functional form, treating the functional form itself as a trainable parameter. Our approach is demonstrated in data analysis applications in high-energy physics experiments at the CERN Large Hadron Collider (LHC). We demonstrate its effectiveness and efficiency using five real proton-proton collision datasets from new physics searches at the LHC, namely the background modeling in resonance searches for high-mass dijet, trijet, paired-dijet, diphoton, and dimuon events. We also validate the framework using several toy datasets with one and more variables.
- Abstract(参考訳): シンボリック回帰を用いてパラメトリックモデリングを自動化するフレームワークであるSybolFitを導入する。
伝統的に、バイナリ化されたデータを正確に記述するためのパラメトリックモデルの構築は手動で反復的なプロセスであり、適合する前に適切な機能形式を決定する必要がある。
主な課題は、適切な函数形式が第一原理から導出できないとき、特に分布に対して根底となる真の閉形式函数が存在しないときである。
本研究では,事前定義された機能形式を必要とせずに候補関数の広大な空間を探索する機械学習手法であるシンボリック回帰を利用してこの問題に対処し,機能形式自体をトレーニング可能なパラメータとして扱う。
本研究では,CERN大ハドロン衝突型加速器(LHC)の高エネルギー物理実験におけるデータ解析への応用について述べる。
高質量ジジェット, トリジェット, 対ジジェット, 双光子, ダイムオンの共鳴探索における背景モデリングをLHCの新しい物理探索から5つの実陽子-陽子衝突データセットを用いて実効性と効率性を示す。
また、1つ以上の変数を持つ複数のおもちゃのデータセットを使用してフレームワークを検証する。
関連論文リスト
- Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Neural Lumped Parameter Differential Equations with Application in
Friction-Stir Processing [2.158307833088858]
Lumpedパラメータ法は、空間的拡張または連続的な物理系の進化を単純化することを目的としている。
一般化微分方程式(Universal Differential Equation)の概念に基づいてデータ駆動モデルを構築する。
論文 参考訳(メタデータ) (2023-04-18T15:11:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
本稿では,ガウス過程(GP)モデルの平均関数にメカニクスに基づくモデルを組み込み,カーネルマシンによる潜在的な不一致を特徴付けることを提案する。
カーネル関数の定常性は、階層的ベイズ手法によって解決された長いデータセットの逐次処理において難しいハードルである。
数値および実験例を用いて, 構造力学逆問題に対する提案手法の可能性を示した。
論文 参考訳(メタデータ) (2023-03-01T02:29:41Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Data-based Discovery of Governing Equations [1.574365819926238]
観測データから制御方程式の自動発見のためのデータベース物理発見(DPD)フレームワークを提案する。
航空産業における実世界のアプリケーション上で,提案するフレームワークの性能を実証する。
論文 参考訳(メタデータ) (2020-12-05T16:10:39Z) - Learning Stable Nonparametric Dynamical Systems with Gaussian Process
Regression [9.126353101382607]
データからガウス過程回帰に基づいて非パラメトリックリアプノフ関数を学習する。
非パラメトリック制御Lyapunov関数に基づく名目モデルの安定化は、トレーニングサンプルにおける名目モデルの挙動を変化させるものではないことを証明した。
論文 参考訳(メタデータ) (2020-06-14T11:17:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。