論文の概要: Quantum Eigensolver for Non-Normal Matrices via Ground State Energy Estimation
- arxiv url: http://arxiv.org/abs/2502.18119v2
- Date: Thu, 02 Oct 2025 02:21:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:19.687041
- Title: Quantum Eigensolver for Non-Normal Matrices via Ground State Energy Estimation
- Title(参考訳): 基底状態エネルギー推定による非線形行列の量子固有解法
- Authors: Honghong Lin, Yun Shang,
- Abstract要約: 大規模な固有値問題は、古典的コンピュータにとって大きな課題となっている。
本稿では,少なくとも1-p_rm fail$の確率で,固有値の推定値を加算誤差$epsilon$内に出力する量子アルゴリズムを提案する。
我々のアルゴリズムはこのスケーリングを実現する最初の一般固有値アルゴリズムである。
- 参考スコア(独自算出の注目度): 0.4511923587827302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale eigenvalue problems pose a significant challenge to classical computers. While there are efficient quantum algorithms for unitary or Hermitian matrices, eigenvalue problems for non-normal matrices remain open in quantum computing. In this work, we propose a quantum algorithm that given a non-normal matrix, outputs an estimate of an eigenvalue to within additive error $\epsilon$ with probability at least $1-p_{\rm fail}$. Our estimation strategy is to sample points on the complex plane and examine the distance between the sampled point and the eigenvalues. We show that the distance is related to the smallest singular value of the shifted matrix, hence reducing the problem to ground state energy estimation via Hermitianization. With the knowledge of an eigenvalue, we are able to prepare the associated eigenvector using ground state preparation. Our estimating scheme can also be modified to approximate the extreme eigenvalue, and in particular the spectral gap. The algorithm is implemented based on the block encoding input model and requires $O(\kappa^2\epsilon^{-(2m-1)}\log(1/p_{\rm fail}))$ queries to the block encoding oracle. Our algorithm is the first general eigenvalue algorithm that achieves this scaling. We also perform numerical simulation to validate the algorithms.
- Abstract(参考訳): 大規模な固有値問題は、古典的コンピュータにとって大きな課題となっている。
ユニタリ行列やエルミート行列には効率的な量子アルゴリズムが存在するが、非正規行列の固有値問題は量子コンピューティングでは未解決のままである。
本研究では、非正規行列を与えられた量子アルゴリズムを用いて、加算誤差$\epsilon$に固有値の推定値を出力し、確率を少なくとも1-p_{\rm fail}$とする。
我々の評価戦略は,複素平面上の点をサンプリングし,サンプル点と固有値の距離を調べることである。
移動行列の最小特異値に距離が関係していることが示され、エルミチアン化による基底状態エネルギー推定の問題が軽減される。
固有値の知識により、基底状態の準備を用いて関連する固有ベクトルを作成できる。
我々の推定スキームは、極端固有値、特にスペクトルギャップを近似するために修正することもできる。
このアルゴリズムはブロック符号化入力モデルに基づいて実装され、ブロック符号化オラクルへの$O(\kappa^2\epsilon^{-(2m-1)}\log(1/p_{\rm fail})$クエリを必要とする。
我々のアルゴリズムはこのスケーリングを実現する最初の一般固有値アルゴリズムである。
また,アルゴリズムの検証のために数値シミュレーションを行う。
関連論文リスト
- Matrix encoding method in variational quantum singular value decomposition [49.494595696663524]
条件測定は、アシラ測定における小さな成功確率を避けるために行われる。
このアルゴリズムの目的関数は、1量子サブシステムの状態を測定することによって確率的に得ることができる。
論文 参考訳(メタデータ) (2025-03-19T07:01:38Z) - Laplace transform based quantum eigenvalue transformation via linear combination of Hamiltonian simulation [13.96848357202551]
本稿では,ある種類の行列ラプラス変換として表現できる固有値変換のクラスを実行するための効率的な量子アルゴリズムを提案する。
我々の固有値変換アプローチは、明示的に$A$を反転させることなくこの問題を解決できることを実証する。
論文 参考訳(メタデータ) (2024-11-06T15:47:48Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
フェミオンガウス状態から行列積状態に変換する高効率なアルゴリズムを提案する。
翻訳不変性のない有限サイズ系に対しては定式化できるが、無限系に適用すると特に魅力的になる。
この手法のポテンシャルは、2つのキラルスピン液体の数値計算によって示される。
論文 参考訳(メタデータ) (2024-08-02T10:15:26Z) - Purely quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems [43.53835128052666]
そこで我々は,行列式と逆行列の計算に$(N-1)倍 (N-1)$行列を求める量子アルゴリズムを提案する。
このアプローチは、N×N$行列の行列式を決定するための既存のアルゴリズムの簡単な修正である。
3つのアルゴリズムすべてに対して適切な回路設計を提供し、それぞれが空間的に$O(N log N)$と見積もられている。
論文 参考訳(メタデータ) (2024-01-29T23:23:27Z) - Quantum eigenvalue processing [0.0]
線形代数の問題は、非正規入力行列の固有値を処理して量子コンピュータ上で解くことができる。
ブロック符号化された非正規作用素の固有値に任意の変換を適用するための量子固有値変換(QEVT)フレームワークを提案する。
また,実スペクトルを持つ演算子に対する量子固有値推定(QEVE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T19:49:31Z) - Using Variational Eigensolvers on Low-End Hardware to Find the Ground
State Energy of Simple Molecules [0.0]
物理系の鍵となる性質は、系を表す行列の固有値によって記述することができる。
これらの行列の固有値を決定する計算アルゴリズムは存在するが、一般に行列のサイズが大きくなるにつれて性能が低下する。
この過程を量子計算に拡張して、古典的アルゴリズムよりも優れた性能で固有値を求めることができる。
論文 参考訳(メタデータ) (2023-10-29T18:36:18Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
完全連結重み付きグラフのラプラシア行列の固有確率を解くための効率的な量子アルゴリズムを提案する。
具体的には,ブロック符号化フレームワークに基づく最適ハミルトンシミュレーション手法を採用する。
また、このアルゴリズムは対称(非対称)正規化ラプラス行列の固有確率を解くために拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T02:24:08Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
本稿では,行列方程式の解法に関わる問題について検討する。
Harrow/Hassidim/Lloydアルゴリズムを固有位相推定のための代替ユニタリを提供することにより一般化する。
このユニタリは任意の行列方程式に対して十分に定義されているという利点があり、それによって解の手順を量子ハードウェアに直接実装することができる。
論文 参考訳(メタデータ) (2021-12-05T15:42:32Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
我々は,ロバストな1ビット圧縮センシングのための相関に基づく最適化アルゴリズムのリカバリ保証を提供する。
我々は,実用的な反復アルゴリズムを用いて,画像データセットの数値実験を行い,結果の相関付けを行う。
論文 参考訳(メタデータ) (2021-08-08T05:28:06Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
本稿では, 変換行列を用いて, 与えられた小さな行列の積を計算するための空間効率のよいスケッチアルゴリズムを提案する。
提案手法は誤差が小さく,空間と時間の両方で効率がよいことを示す。
論文 参考訳(メタデータ) (2020-02-23T03:07:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。