論文の概要: A Structure-Preserving Framework for Solving Parabolic Partial Differential Equations with Neural Networks
- arxiv url: http://arxiv.org/abs/2504.10273v2
- Date: Thu, 07 Aug 2025 03:06:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.544745
- Title: A Structure-Preserving Framework for Solving Parabolic Partial Differential Equations with Neural Networks
- Title(参考訳): ニューラルネットワークを用いたパラボリック部分微分方程式の解法のための構造保存フレームワーク
- Authors: Gaohang Chen, Lili Ju, Zhonghua Qiao,
- Abstract要約: パラボリックPDEを解くために,既存のNNソルバの物理的整合性を高める新しいフレームワークを提案する。
時間依存スペクトル再正規化アプローチにインスパイアされた私たちのSidecarフレームワークは、副操縦士として小さなネットワークを導入する。
我々のフレームワークは非常に柔軟であり、様々なPDEの物理量の保存を幅広いNNソルバに組み込むことができる。
- 参考スコア(独自算出の注目度): 7.037707804854564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving partial differential equations (PDEs) with neural networks (NNs) has shown great potential in various scientific and engineering fields. However, most existing NN solvers mainly focus on satisfying the given PDE formulas in the strong or weak sense, without explicitly considering some intrinsic physical properties, such as mass and momentum conservation, or energy dissipation. This limitation may result in nonphysical or unstable numerical solutions, particularly in long-term simulations. To address this issue, we propose ``Sidecar'', a novel framework that enhances the physical consistency of existing NN solvers for solving parabolic PDEs. Inspired by the time-dependent spectral renormalization approach, our Sidecar framework introduces a small network as a copilot, guiding the primary function-learning NN solver to respect the structure-preserving properties. Our framework is highly flexible, allowing the preservation of various physical quantities for different PDEs to be incorporated into a wide range of NN solvers. Experimental results on some benchmark problems demonstrate significant improvements brought by the proposed framework to both accuracy and structure preservation of existing NN solvers.
- Abstract(参考訳): ニューラルネットワーク(NN)を用いた偏微分方程式(PDE)の解法は、様々な科学・工学分野において大きな可能性を示している。
しかし、既存のNNソルバのほとんどは、主に、質量や運動量保存、エネルギーの消散といった固有の物理的性質を明示的に考慮することなく、与えられたPDE式を強いまたは弱い意味で満たすことに重点を置いている。
この制限は、特に長期シミュレーションにおいて、非物理的または不安定な数値解をもたらす可能性がある。
この問題に対処するため,パラボリックPDEを解くために既存のNNソルバの物理的整合性を高める新しいフレームワークである `Sidecar' を提案する。
時間依存スペクトル再正規化アプローチに触発されて,私たちのSidecarフレームワークは,構造保存特性を尊重する主機能学習NNソルバを誘導する,小さなネットワークを共振器として導入する。
我々のフレームワークは非常に柔軟であり、様々なPDEの物理量の保存を幅広いNNソルバに組み込むことができる。
いくつかのベンチマーク問題に対する実験結果から,既存のNNソルバの精度と構造保存の両面において,提案手法による大幅な改善が示された。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks [0.9999629695552196]
偏微分方程式(PDE)の解法として物理情報ニューラルネットワーク(PINN)が誕生した。
我々はSPIKAN(Sparable Physics-Informed Kolmogorov-Arnold Networks)を紹介する。
この新しいアーキテクチャは変数分離の原則をPIKANに適用し、各次元が個別のKAで扱われるような問題を分解する。
論文 参考訳(メタデータ) (2024-11-09T21:10:23Z) - SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
ローカル依存関係を効果的にキャプチャするフレームワークであるSetPINNを紹介する。
ドメインをセットに分割して、物理法則を同時に適用しながら、ローカル依存関係をモデル化します。
論文 参考訳(メタデータ) (2024-09-30T11:41:58Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-10T05:20:43Z) - Structure-Preserving Physics-Informed Neural Networks With Energy or
Lyapunov Structure [9.571966961251347]
本稿では,構造保存型PINNを提案し,その性能を向上し,下流タスクへの適用範囲を広げる。
構造保存型PINNを用いたロバスト画像認識のためのフレームワークを提案する。
実験により,提案手法は偏微分方程式に対するPINNの数値精度を向上することを示した。
論文 参考訳(メタデータ) (2024-01-10T08:02:38Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
非線形PDEシステムを解くためにカーネル法とディープNNの長所を統合するためにカーネル重み付き補正残差(CoRes)を導入する。
CoResは幅広いベンチマーク問題の解決において競合する手法を一貫して上回っている。
我々はPDEの解決にカーネル手法を活用することに新たな関心を喚起する可能性があると考えている。
論文 参考訳(メタデータ) (2024-01-07T14:09:42Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
ラベルなしでPDEを解くために、新しい物理制約ニューラルネットワーク(NN)アプローチが提案されている。
我々は,PDEの離散化残差に基づくNNの損失関数を,効率的で畳み込み演算子に基づくベクトル化実装により記述する。
本研究では, 定常拡散, 線形弾性, 非線形弾性に応用し, 提案フレームワークの性能と性能を示す。
論文 参考訳(メタデータ) (2021-01-13T04:57:51Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。