論文の概要: Closed-form Symbolic Solutions: A New Perspective on Solving Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2405.14620v1
- Date: Thu, 23 May 2024 14:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:35:49.651262
- Title: Closed-form Symbolic Solutions: A New Perspective on Solving Partial Differential Equations
- Title(参考訳): 閉形式記号解:偏微分方程式の解法の新しい展望
- Authors: Shu Wei, Yanjie Li, Lina Yu, Min Wu, Weijun Li, Meilan Hao, Wenqiang Li, Jingyi Liu, Yusong Deng,
- Abstract要約: 閉形式シンボリック解を用いた偏微分方程式(PDE)不変空間の解法は、数学者にとって長年の夢であった。
深層学習にインスパイアされた物理情報ニューラルネットワーク(PINN)は,PDEを数値的に解く上で大きな可能性を秘めている。
テキスト形式のtextbfbfSymbolic framework for textbfPDEs (SymPDE) を提案する。
- 参考スコア(独自算出の注目度): 12.660401635672969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving partial differential equations (PDEs) in Euclidean space with closed-form symbolic solutions has long been a dream for mathematicians. Inspired by deep learning, Physics-Informed Neural Networks (PINNs) have shown great promise in numerically solving PDEs. However, since PINNs essentially approximate solutions within the continuous function space, their numerical solutions fall short in both precision and interpretability compared to symbolic solutions. This paper proposes a novel framework: a closed-form \textbf{Sym}bolic framework for \textbf{PDE}s (SymPDE), exploring the use of deep reinforcement learning to directly obtain symbolic solutions for PDEs. SymPDE alleviates the challenges PINNs face in fitting high-frequency and steeply changing functions. To our knowledge, no prior work has implemented this approach. Experiments on solving the Poisson's equation and heat equation in time-independent and spatiotemporal dynamical systems respectively demonstrate that SymPDE can provide accurate closed-form symbolic solutions for various types of PDEs.
- Abstract(参考訳): 閉形式記号解によるユークリッド空間における偏微分方程式(PDE)の解法は、数学者にとって長年の夢であった。
深層学習にインスパイアされた物理情報ニューラルネットワーク(PINN)は,PDEを数値的に解く上で大きな可能性を秘めている。
しかし、PINNは本質的に連続関数空間内の近似解であるため、数値解は記号解と比較して精度と解釈性の両方に劣る。
本稿では, PDE の記号解を直接取得するための深層強化学習の活用を探求する, 閉形式 \textbf{Sym}bolic framework for \textbf{PDE}s (SymPDE) を提案する。
SymPDEは、高周波で急激に変化する機能に適合するPINNが直面する課題を軽減する。
私たちの知る限りでは、これまでの作業ではこのアプローチを実装していません。
時間非依存系と時空間力学系におけるポアソン方程式と熱方程式の解法の実験は、SymPDEが様々な種類のPDEに対して正確な閉形式記号解を提供できることを示した。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Meta-learning of Physics-informed Neural Networks for Efficiently
Solving Newly Given PDEs [33.072056425485115]
本稿では、偏微分方程式(PDE)問題を効率的に解くニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は多種多様なPDE問題の解法をメタラーニングし,その知識を新たに与えられたPDE問題の解法に用いる。
提案手法は,PDE問題の解を予測する上で,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-20T04:35:59Z) - A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I [0.0]
本研究では,非線形PDEの解を近似する物理情報深層学習フレームワークの開発に焦点をあてる。
この枠組みは、境界条件(ノイマン/ディリクレ)、エントロピー条件、および正則性要件の仮定を自然に扱う。
論文 参考訳(メタデータ) (2023-07-09T08:27:17Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Learning time-dependent PDE solver using Message Passing Graph Neural
Networks [0.0]
本稿では,メッセージパッシングモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
グラフを用いて、非構造化メッシュ上でPDEデータを表現し、メッセージパッシンググラフニューラルネットワーク(MPGNN)が支配方程式をパラメータ化できることを示す。
繰り返しグラフニューラルネットワークは,PDEに対する解の時間列を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-04-15T21:10:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。