論文の概要: Closed-form Symbolic Solutions: A New Perspective on Solving Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2405.14620v1
- Date: Thu, 23 May 2024 14:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:35:49.651262
- Title: Closed-form Symbolic Solutions: A New Perspective on Solving Partial Differential Equations
- Title(参考訳): 閉形式記号解:偏微分方程式の解法の新しい展望
- Authors: Shu Wei, Yanjie Li, Lina Yu, Min Wu, Weijun Li, Meilan Hao, Wenqiang Li, Jingyi Liu, Yusong Deng,
- Abstract要約: 閉形式シンボリック解を用いた偏微分方程式(PDE)不変空間の解法は、数学者にとって長年の夢であった。
深層学習にインスパイアされた物理情報ニューラルネットワーク(PINN)は,PDEを数値的に解く上で大きな可能性を秘めている。
テキスト形式のtextbfbfSymbolic framework for textbfPDEs (SymPDE) を提案する。
- 参考スコア(独自算出の注目度): 12.660401635672969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving partial differential equations (PDEs) in Euclidean space with closed-form symbolic solutions has long been a dream for mathematicians. Inspired by deep learning, Physics-Informed Neural Networks (PINNs) have shown great promise in numerically solving PDEs. However, since PINNs essentially approximate solutions within the continuous function space, their numerical solutions fall short in both precision and interpretability compared to symbolic solutions. This paper proposes a novel framework: a closed-form \textbf{Sym}bolic framework for \textbf{PDE}s (SymPDE), exploring the use of deep reinforcement learning to directly obtain symbolic solutions for PDEs. SymPDE alleviates the challenges PINNs face in fitting high-frequency and steeply changing functions. To our knowledge, no prior work has implemented this approach. Experiments on solving the Poisson's equation and heat equation in time-independent and spatiotemporal dynamical systems respectively demonstrate that SymPDE can provide accurate closed-form symbolic solutions for various types of PDEs.
- Abstract(参考訳): 閉形式記号解によるユークリッド空間における偏微分方程式(PDE)の解法は、数学者にとって長年の夢であった。
深層学習にインスパイアされた物理情報ニューラルネットワーク(PINN)は,PDEを数値的に解く上で大きな可能性を秘めている。
しかし、PINNは本質的に連続関数空間内の近似解であるため、数値解は記号解と比較して精度と解釈性の両方に劣る。
本稿では, PDE の記号解を直接取得するための深層強化学習の活用を探求する, 閉形式 \textbf{Sym}bolic framework for \textbf{PDE}s (SymPDE) を提案する。
SymPDEは、高周波で急激に変化する機能に適合するPINNが直面する課題を軽減する。
私たちの知る限りでは、これまでの作業ではこのアプローチを実装していません。
時間非依存系と時空間力学系におけるポアソン方程式と熱方程式の解法の実験は、SymPDEが様々な種類のPDEに対して正確な閉形式記号解を提供できることを示した。
関連論文リスト
- Neuro-Symbolic AI for Analytical Solutions of Differential Equations [11.177091143370466]
本稿では,ニューロシンボリックAIフレームワークを用いて微分方程式の解析解を求める。
この積分は、ニューロシンボリックAIフレームワークを介して数値方程式と記号微分方程式を統一する。
様々な問題に対して,商業的解法,記号的解法,近似ニューラルネットワークの利点を示す。
論文 参考訳(メタデータ) (2025-02-03T16:06:56Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
論文 参考訳(メタデータ) (2024-04-23T10:51:31Z) - Towards true discovery of the differential equations [57.089645396998506]
微分方程式探索は、解釈可能なモデルを開発するために使用される機械学習サブフィールドである。
本稿では,専門家の入力を伴わない独立方程式発見のための前提条件とツールについて検討する。
論文 参考訳(メタデータ) (2023-08-09T12:03:12Z) - Genetic Programming Based Symbolic Regression for Analytical Solutions
to Differential Equations [8.669375104787806]
本稿では,微分方程式の解析解の発見のための機械学習手法を提案する。
数値近似とは対照的に,真の解析解を復元する能力を示す。
論文 参考訳(メタデータ) (2023-02-07T00:23:07Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
本稿では、微分方程式の正確な解や近似解を生成するニューラルネットワーク手法について述べる。
他のニューラルネットワークとは異なり、我々のシステムは直接解釈できるシンボリック表現を返す。
論文 参考訳(メタデータ) (2020-11-12T22:16:03Z) - A Neuro-Symbolic Method for Solving Differential and Functional
Equations [6.899578710832262]
微分方程式を解くために記号式を生成する方法を提案する。
既存の手法とは異なり、このシステムは記号数学よりも言語モデルを学習する必要はない。
我々は,他の数学的課題に対するシンボリックな解を見つけるために,システムがいかに懸命に一般化されるかを示す。
論文 参考訳(メタデータ) (2020-11-04T17:13:25Z) - Comparison of Distal Teacher Learning with Numerical and Analytical
Methods to Solve Inverse Kinematics for Rigid-Body Mechanisms [67.80123919697971]
私たちは、逆キネマティクス(DT)に対する最初の機械学習(ML)ソリューションの1つとして、微分可能なプログラミングライブラリを組み合わせると、実際には十分よいと論じています。
我々は,解答率,精度,サンプル効率,スケーラビリティを解析する。
十分なトレーニングデータと緩和精度の要求により、DTはより優れた解法率を持ち、15-DoF機構のための最先端の数値解法よりも高速である。
論文 参考訳(メタデータ) (2020-02-29T09:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。