このサイトではarxivの論文のうち、30ページ以下でCreative Commonsライセンス(CC 0, CC BY, CC BY-SA)の論文を日本語訳しています。 本文がCCでない論文、長すぎる論文はメタデータのみを翻訳しています。(arxivのメタデータは CC 0です。) 翻訳文のライセンスはCC BY-SA 4.0です。 翻訳にはFugu-Machine Translatorを利用しています。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。
公開日が20210827となっている論文です。
Title | Authors | Abstract | 論文公表日・翻訳日 |
---|---|---|---|
# グラフ問題の量子近似最適化における到達性欠陥 Reachability Deficits in Quantum Approximate Optimization of Graph Problems ( http://arxiv.org/abs/2007.09148v2 ) ライセンス: Link先を確認 | V. Akshay and H. Philathong and I. Zacharov and J. Biamonte | (参考訳) 量子近似最適化アルゴリズム(QAOA)は、現代の量子アプリケーション開発の基礎となっている。
ここで、問題制約と問題変数の \emph{density} がパフォーマンス指標として作用することを示す。
密度は、ランダムグラフ最小化問題に適用される固定深さqaoaの近似非効率と強く相関する。
さらに、グラフ問題インスタンスに対する正確なQAOAソリューションに必要な深さは、密度とともに決定的にスケールする。
Googleが最近行ったQAOAの実験的実現に触発されて、理想的なノイズのない環境で再現されたレポートデータの再分析をプリフォームする。
その結果、Googleが実験的に解決したインスタンスの能力は、中間密度を超えた近似品質で急速に低下する領域に近づいた。
本研究は,現代の量子最適化アルゴリズムの性能解析に新たな知見を与え,近年のqaoa性能向上に関する憶測と矛盾する。 The quantum approximate optimization algorithm (QAOA) has become a cornerstone of contemporary quantum applications development. Here we show that the \emph{density} of problem constraints versus problem variables acts as a performance indicator. Density is found to correlate strongly with approximation inefficiency for fixed depth QAOA applied to random graph minimization problem instances. Further, the required depth for accurate QAOA solution to graph problem instances scales critically with density. Motivated by Google's recent experimental realization of QAOA, we preform a reanalysis of the reported data reproduced in an ideal noiseless setting. We found that the reported capabilities of instances addressed experimentally by Google, approach a rapid fall-off region in approximation quality experienced beyond intermediate-density. Our findings offer new insight into performance analysis of contemporary quantum optimization algorithms and contradict recent speculation regarding low-depth QAOA performance benefits. | 翻訳日:2023-05-09 04:52:02 公開日:2021-08-27 |
# 決定不能と予測不能: 限界ではなく、科学の勝利 Undecidability and unpredictability: not limitations, but triumphs of science ( http://arxiv.org/abs/2008.09821v2 ) ライセンス: Link先を確認 | Markus P. Mueller | (参考訳) G\"odelの不完全性定理や量子力学の内在的ランダム性のような結果は、人類の科学的知識に対する努力の基本的な限界を表しているという広く信じられている。
議論が進むにつれ、我々が科学的手法で決して発見できない真実が存在するため、我々は謙虚で、科学的把握を超えた現実を認めなければならない。
ここで、私はこの見解が間違っていると論じる。
物理的・プラトン的な世界は、あらゆる可能な問題に対する全ての答えが、何らかの形で存在してはいるが、認識的に到達できないような、明確な性質を持つものの集合であると見なす、単純な形に起源を持つ。
この考え方は、哲学的に疑問を呈するばかりでなく、現代の物理学と相反するものである。
したがって、この視点を「物」ではなく「現実のパターン」という構造的概念を基本とする世界観に置き換えることを議論する。
分かっていることの限界ではなく、決定不能と予測不能は、構造の不微分の単なるステートメントになる。
これにより、現代の物理学によってよりよく理解されるリアリズムの概念が得られ、何が達成できるかという楽観的な展望が得られます。 It is a widespread belief that results like G\"odel's incompleteness theorems or the intrinsic randomness of quantum mechanics represent fundamental limitations to humanity's strive for scientific knowledge. As the argument goes, there are truths that we can never uncover with our scientific methods, hence we should be humble and acknowledge a reality beyond our scientific grasp. Here, I argue that this view is wrong. It originates in a naive form of metaphysics that sees the physical and Platonic worlds as a collection of things with definite properties such that all answers to all possible questions exist ontologically somehow, but are epistemically inaccessible. This view is not only a priori philosophically questionable, but also at odds with modern physics. Hence, I argue to replace this perspective by a worldview in which a structural notion of `real patterns', not `things' are regarded as fundamental. Instead of a limitation of what we can know, undecidability and unpredictability then become mere statements of undifferentiation of structure. This gives us a notion of realism that is better informed by modern physics, and an optimistic outlook on what we can achieve: we can know what there is to know, despite the apparent barriers of undecidability results. | 翻訳日:2023-05-05 05:58:16 公開日:2021-08-27 |
# 量子ビットリセットを用いた量子効率エンタングルメント分光 Qubit-efficient entanglement spectroscopy using qubit resets ( http://arxiv.org/abs/2010.03080v2 ) ライセンス: Link先を確認 | Justin Yirka and Yigit Subasi | (参考訳) NISQデバイスにより大きな問題に適合する戦略の1つは、回路幅と回路深さのトレードオフを利用することである。
残念なことに、このトレードオフは、ノイズが支配する前に深さが増加することがしばしば実現できないため、扱いやすい問題のサイズを制限する。
ここでは、このトレードオフを避けるために、エンタングルメント分光法のための量子アルゴリズムを開発する。
特に,量子系における密度演算子のn次パワーである$tr(\rho^n)$(順序 n の r\'enyi エントロピーに関連する)のトレースを計算するアルゴリズムを開発した。
n とは独立に複数の量子ビットを必要とする我々のアルゴリズムは、n に比例する幅を持つ以前のアルゴリズムの変種であり、漸近的な差である。
これらの新しいアルゴリズムにおいて重要な要素は、計算の過程でキュービットのサブセットを測定し、再初期化する能力であり、通常のノイズに悩まされることなく、キュービットの再利用と回路深さの増大を可能にする。
また,量子ビットリセット回路に適した標準回路深さの一般化として,有効回路深さの概念を導入する。
このツールは、量子ビット効率のアルゴリズムのノイズ耐性を説明するのに役立ち、将来のアルゴリズムの設計に役立ちます。
我々は,アルゴリズムを元の変種と比較する数値シミュレーションを行い,ノイズを受ける場合と同様の性能を示す。
さらに,honeywell システムモデル h0 上で量子ビット効率の高いアルゴリズムを実験的に実装し,従来よりも大きな n に対して $tr(\rho^n)$ を推定した。 One strategy to fit larger problems on NISQ devices is to exploit a tradeoff between circuit width and circuit depth. Unfortunately, this tradeoff still limits the size of tractable problems since the increased depth is often not realizable before noise dominates. Here, we develop qubit-efficient quantum algorithms for entanglement spectroscopy which avoid this tradeoff. In particular, we develop algorithms for computing the trace of the n-th power of the density operator of a quantum system, $Tr(\rho^n)$, (related to the R\'enyi entropy of order n) that use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise, thus enabling spectroscopy of larger quantum systems on NISQ devices. Our algorithms, which require a number of qubits independent of n, are variants of previous algorithms with width proportional to n, an asymptotic difference. The crucial ingredient in these new algorithms is the ability to measure and reinitialize subsets of qubits in the course of the computation, allowing us to reuse qubits and increase the circuit depth without suffering the usual noisy consequences. We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets. This tool helps explain the noise-resilience of our qubit-efficient algorithms and should aid in designing future algorithms. We perform numerical simulations to compare our algorithms to the original variants and show they perform similarly when subjected to noise. Additionally, we experimentally implement one of our qubit-efficient algorithms on the Honeywell System Model H0, estimating $Tr(\rho^n)$ for larger n than possible with previous algorithms. | 翻訳日:2023-04-29 20:05:52 公開日:2021-08-27 |
# ランダム混合状態の絡み合い負性スペクトル:図解的アプローチ Entanglement negativity spectrum of random mixed states: A diagrammatic approach ( http://arxiv.org/abs/2011.01277v2 ) ライセンス: Link先を確認 | Hassan Shapourian, Shang Liu, Jonah Kudler-Flam, Ashvin Vishwanath | (参考訳) ランダムな純粋な状態の絡み合い特性はカオス量子力学からブラックホール物理学まで様々な問題に関係している。
そのような状態の平均二部絡みエントロピーは体積則を認め、部分領域サイズを増加させるとページ曲線に従う。
本稿では,システムを浴槽に結合し,その絡み合い特性を調べるために部分転座を用いてランダムな混合状態に一般化する。
確率行列理論に部分変換を組み込んで、ヒルベルト空間次元の逆数である1/L$で摂動理論を定式化する図式法を開発した。
我々は,部分転位スペクトル密度(あるいはエンタングルメント負性スペクトル),固有値の2点相関器,対数負性などの数量を計算する。
浴槽がシステムより小さい限り, サブリージョンサイズをスイープすると, 対数ネガティリティは初期増加とページ曲線に類似した最終減少を示し, 対数ネガティリティはシステムサイズと浴槽サイズのみに依存するが, システム分割の方法には依存しない中間状態の高原を認める。
この中間相はランダムな純粋状態のアナログを持たず、臨界点によって他の2つの状態から分離される。
さらに, 浴槽が少なくとも2つの余剰量子ビットでシステムよりも大きい場合, 対数陰性度はゼロであり, 蒸留可能な絡み合いがないことを示す。
ダイアグラム的アプローチを用いて、後者の2つの状態における絡み合う負性スペクトルの半円法則を単純な導出する。
半円の分布の出現にもかかわらず,ガウスユニタリアンサンブル (GUE) を思わせるほど, 負性スペクトルと2点相関器の高次補正はGUEと異なっていた。 The entanglement properties of random pure states are relevant to a variety of problems ranging from chaotic quantum dynamics to black hole physics. The averaged bipartite entanglement entropy of such states admits a volume law and upon increasing the subregion size follows the Page curve. In this paper, we generalize this setup to random mixed states by coupling the system to a bath and use the partial transpose to study their entanglement properties. We develop a diagrammatic method to incorporate partial transpose within random matrix theory and formulate a perturbation theory in $1/L$, the inverse of the Hilbert space dimension. We compute several quantities including the spectral density of partial transpose (or entanglement negativity spectrum), two-point correlator of eigenvalues, and the logarithmic negativity. As long as the bath is smaller than the system, we find that upon sweeping the subregion size, the logarithmic negativity shows an initial increase and a final decrease similar to the Page curve, while it admits a plateau in the intermediate regime where the logarithmic negativity only depends on the size of the system and of the bath but not on how the system is partitioned. This intermediate phase has no analog in random pure states, and is separated from the two other regimes by a critical point. We further show that when the bath is larger than the system by at least two extra qubits the logarithmic negativity is identically zero which implies that there is no distillable entanglement. Using the diagrammatic approach, we provide a simple derivation of the semi-circle law of the entanglement negativity spectrum in the latter two regimes. We show that despite the appearance of a semicircle distribution, reminiscent of Gaussian unitary ensemble (GUE), the higher order corrections to the negativity spectrum and two-point correlator deviate from those of GUE. | 翻訳日:2023-04-26 01:32:04 公開日:2021-08-27 |
# 直接検出した損失光子チャネルの容量 Capacity of a lossy photon channel with direct detection ( http://arxiv.org/abs/2012.02801v2 ) ライセンス: Link先を確認 | Karol {\L}ukanowski, Marcin Jarzyna | (参考訳) 出力における光子数分解検出を仮定した損失光子チャネルの容量を数値的に計算する。
入力フォックとコヒーレント状態のアンサンブルのシナリオを検討し,後者が常に前者よりもパフォーマンスが悪くなることを示す。
我々は,Fock状態アンサンブル容量の制限挙動として,離散時間ポアソンチャネルの容量を得る。
また, 弱い光子数と低損失の状況下では, 直接検出によるフォック状態のアンサンブルは, 二次検出によるキャパシティ限界に対して有益であることを示す。 We calculate numerically the capacity of a lossy photon channel assuming photon number resolving detection at the output. We consider scenarios of input Fock and coherent states ensembles and show that the latter always exhibits worse performance than the former. We obtain capacity of a discrete-time Poisson channel as a limiting behavior of the Fock states ensemble capacity. We show also that in the regime of a moderate number of photons and low losses the Fock states ensemble with direct detection is beneficial with respect to capacity limits achievable with quadrature detection. | 翻訳日:2023-04-22 02:43:51 公開日:2021-08-27 |
# 宇宙弦背景における誘起真空磁場 Induced vacuum magnetic field in the cosmic string background ( http://arxiv.org/abs/2103.06222v2 ) ライセンス: Link先を確認 | Yurii A. Sitenko | (参考訳) 相対論的荷電スピノル物質場は、非有界な横大きさの直線宇宙弦の背景において量子化される。
最も一般的な境界条件は、ストリングコアの端から物質が貫通する可能性を保証することである。
離散対称性の役割は解明され、誘導された真空電流の時間的および空間的成分の分析式は、エッジの点から点へ任意に変化する2つのパラメータを持つ$p$または$ct$不変境界条件の場合に導出される。
大域的に誘導される真空特性に対する物理的妥当性の要件は, 境界条件の偏りを完全に排除できることが示されている。
真空中で磁場が誘導され、磁束線の管状のシースが宇宙線を囲んでいることが判明した。
誘導された真空磁場強度が弦のフラックスおよび張力、および弦の横サイズおよび弦からの距離に対する依存性を曖昧に決定する。 The relativistic charged spinor matter field is quantized in the background of a straight cosmic string with nonvanishing transverse size. The most general boundary conditions ensuring the impossibility for matter to penetrate through the edge of the string core are considered. The role of discrete symmetries is elucidated, and analytic expressions for the temporal and spatial components of the induced vacuum current are derived in the case of either $P$ or $CT$ invariant boundary condition with two parameters varying arbitrarily from point to point of the edge. The requirement of physical plausibility for the global induced vacuum characteristics is shown to remove completely an arbitrariness in boundary conditions. We find out that a magnetic field is induced in the vacuum and that a sheath in the form of a tube of the magnetic flux lines encloses a cosmic string. The dependence of the induced vacuum magnetic field strength on the string flux and tension, as well as on the transverse size of the string and on the distance from the string, is unambiguously determined. | 翻訳日:2023-04-08 13:33:36 公開日:2021-08-27 |
# 非線形フィードフォワードによる光量子ビット上の非クリフォードゲート Non-Clifford gate on optical qubits by nonlinear feedforward ( http://arxiv.org/abs/2103.10644v4 ) ライセンス: Link先を確認 | Shunya Konno, Warit Asavanant, Kosuke Fukui, Atsushi Sakaguchi, Fumiya Hanamura, Petr Marek, Radim Filip, Jun-ichi Yoshikawa, and Akira Furusawa | (参考訳) 連続可変光システムでは、Gottesman-Kitaev-Preskill (GKP) qubit がフォールトトレラント量子計算の候補となる。
GKP量子ビット上の非クリフォード演算を実装するには、非ガウス演算が必要である。
この文脈では、非線形フィードフォワードと補助状態を組み合わせた立方相ゲートの実装が広く研究されている。
しかし,近年,gkp量子ビットの非クリフォード演算には立方体位相ゲートが最適でないことが指摘されている。
本研究では,GKP qubit の非線形フィードフォワードを立方相ゲートに応用し,GKP を符号化したアシラリー状態を用いて,GKP qubit 上の非クリフォード演算の線形光学的実装を実現することができることを示す。
本研究は,フォールトトレラント連続変数量子計算の光学的実装に重要な非線形フィードフォワード手法の汎用性を示す。 In a continuous-variable optical system, the Gottesman-Kitaev-Preskill (GKP) qubit is a promising candidate for fault-tolerant quantum computation. To implement non-Clifford operations on GKP qubits, non-Gaussian operations are required. In this context, the implementation of a cubic phase gate by combining nonlinear feedforward with ancillary states has been widely researched. Recently, however, it is pointed out that the cubic phase gate is not the most suitable for non-Clifford operations on GKP qubits. In this work, we show that we can achieve linear optical implementation of non-Clifford operations on GKP qubit with high fidelity by applying the nonlinear feedforward originally developed for the cubic phase gate and using a GKP-encoded ancillary state. Our work shows the versatility of nonlinear feedforward technique important for optical implementation of the fault-tolerant continuous-variable quantum computation. | 翻訳日:2023-04-07 11:02:28 公開日:2021-08-27 |
# 無散逸ベクトルドラッグ-超流動スピンホール効果 Dissipationless Vector Drag--Superfluid Spin Hall Effect ( http://arxiv.org/abs/2103.16531v2 ) ライセンス: Link先を確認 | Andrzej Syrwid, Emil Blomquist and Egor Babaev | (参考訳) 単一成分超流体中の散逸のない流れは、かなりの普遍性を持つ。
He4では、散逸のない質量の流れは超流動相の勾配によって決定される超流動速度で起こる。
しかし、相互作用する超流動混合物では、主に新しい効果が現れる。
このレターでは,光学格子中の相互作用するボソンの混合物に生じる新しい無散逸現象を示す。
特定の種類の光学格子に対して、粒子の1つの超流動が他の成分の散逸のない質量流をもたらす状態において、粒子の超流動速度とは異なる方向にボゾンが凝縮することが指摘されている。
これらの系の自由エネルギー密度は、超流動速度のベクトル積のような相互作用を含み、散逸のない非共線形エントレインメントを生成する。
この効果はスピンホール効果の超流動効果を表す。 Dissipationless flows in single-component superfluids have a significant degree of universality. In He4, the dissipationless mass flow occurs with a superfluid velocity determined by the gradient of the superfluid phase. However, in interacting superfluid mixtures, principally new effects appear. In this Letter, we demonstrate a new kind of dissipationless phenomenon arising in mixtures of interacting bosons in optical lattices. We point out that for a particular class of optical lattices, bosons condense in a state where one of the components' superflow results in dissipationless mass flow of the other component, in a direction different from either of the components' superfluid velocities. The free-energy density of these systems contains a vector product-like interaction of superfluid velocities, producing the dissipationless noncollinear entrainment. The effect represents a superfluid counterpart of the Spin Hall effect. | 翻訳日:2023-04-06 03:32:19 公開日:2021-08-27 |
# 励起状態に対する深部変分量子固有解法とその周期材料の量子化学計算への応用 Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials ( http://arxiv.org/abs/2104.00855v2 ) ライセンス: Link先を確認 | Kaoru Mizuta, Mikiya Fujii, Shigeki Fujii, Kazuhide Ichikawa, Yutaka Imamura, Yukihiro Okuno, and Yuya O. Nakagawa | (参考訳) 近年,フォールトトレランスのない多数の量子ビットを持つプログラマブル量子デバイスが出現している。
変分量子固有解法(VQE)は、凝縮物質物理学や量子化学の問題を解くためにそのような装置の計算能力を利用する最も有望な方法の1つである。
現在の量子デバイスのサイズは、実用上の問題を解決するために古典的コンピュータに匹敵するほど大きくないため、Fujiiらは、VQEと粗粒化技術(K. Fujii, et al, arXiv:2007.10917]を組み合わせることで、与えられた量子システムの基底状態をより少ない量子ビットで提供できる「ディープVQE」という手法を提案した。
本稿では,この励起状態を得るために深部vqeの最初の提案を拡張し,vqeの最も影響のある応用の一つである周期物質の量子化学計算に適用する。
まず, 深部VQEにおける粗粒化のための量子状態構築法を提案し, 励起状態を得る。
また、変動量子状態を制限することなく、元のDeep VQEにおける意味のない固有値の問題を回避する方法を提案する。
最後に、周期的水素鎖の量子化学計算のための修正された深部VQEを典型的な周期的材料として古典的にシミュレートする。
本手法は, 平均vqeと比較して, 計算に必要な量子ビット数が2~4個減少しているにもかかわらず, 誤差をo(1)%まで抑えることで, 基底状態エネルギーと第一励起状態エネルギーを再現する。
我々の結果は、近い将来、より小さな量子デバイスによって古典的に難解なサイズで量子化学問題に取り組むための手掛かりとなるでしょう。 A programmable quantum device that has a large number of qubits without fault-tolerance has emerged recently. Variational Quantum Eigensolver (VQE) is one of the most promising ways to utilize the computational power of such devices to solve problems in condensed matter physics and quantum chemistry. As the size of the current quantum devices is still not large for rivaling classical computers at solving practical problems, Fujii et al. proposed a method called "Deep VQE" which can provide the ground state of a given quantum system with the smaller number of qubits by combining the VQE and the technique of coarse-graining [K. Fujii, et al, arXiv:2007.10917]. In this paper, we extend the original proposal of Deep VQE to obtain the excited states and apply it to quantum chemistry calculation of a periodic material, which is one of the most impactful applications of the VQE. We first propose a modified scheme to construct quantum states for coarse-graining in Deep VQE to obtain the excited states. We also present a method to avoid a problem of meaningless eigenvalues in the original Deep VQE without restricting variational quantum states. Finally, we classically simulate our modified Deep VQE for quantum chemistry calculation of a periodic hydrogen chain as a typical periodic material. Our method reproduces the ground-state energy and the first-excited-state energy with the errors up to O(1)% despite the decrease in the number of qubits required for the calculation by two or four compared with the naive VQE. Our result will serve as a beacon for tackling quantum chemistry problems with classically-intractable sizes by smaller quantum devices in the near future. | 翻訳日:2023-04-05 20:00:42 公開日:2021-08-27 |
# ベルテストの文脈性記述:例外ではない規則としての文脈性 Contextuality-by-Default description of Bell tests: Contextuality as the rule not as an exception ( http://arxiv.org/abs/2104.11555v4 ) ライセンス: Link先を確認 | Marian Kupczynski | (参考訳) 文脈性と絡み合いは量子コンピューティングや量子情報にとって貴重な資源である。
ベルの不等式は絡み合いの証明に用いられるため、なぜどのように侵害されるのかを理解することが重要である。
量子力学と行動科学は、他の確率変数と共同で測定した場合、同じ内容(同じYesかNoの答え)を計測するランダム変数が異なる可能性があることを教えてくれる。
aliceとbob raw dataはアインシュタインの非信号性を確認しているが、依存する実験プロトコルの設定は、遠方の結果の結合ペアのサンプルを作成し、相関を推定するために使われる。
これらの最終サンプルを使って推定される限界的な期待は、遠方の設定に依存する。
したがって,ベル試験で測定された確率変数の系は不整合に結合しており,本論文で最初に行うことを前提とした文脈性分析を行う必要がある。
ベルの不等式と不整合接続性の違反は、測定器を記述する依存変数の設定を正しく組み込んだ文脈的局所因果確率モデルを用いて説明することができる。
このモデルが科学の前提条件である選択の自由を制限するものではないことを証明している。
コンテキスト性はルールであり、例外ではないように思われる。 Contextuality and entanglement are valuable resources for quantum computing and quantum information. Bell inequalities are used to certify entanglement; thus, it is important to understand why and how they are violated. Quantum mechanics and behavioral sciences teach us that random variables measuring the same content (the answer to the same Yes or No question) may vary, if measured jointly with other random variables. Alice and Bob raw data confirm Einsteinian non-signaling, but setting dependent experimental protocols are used to create samples of coupled pairs of distant outcomes and to estimate correlations. Marginal expectations, estimated using these final samples, depend on distant settings. Therefore, a system of random variables measured in Bell tests is inconsistently connected and it should be analyzed using a Contextuality-by-Default approach, what is done for the first time in this paper. The violation of Bell inequalities and inconsistent connectedness may be explained using a contextual locally causal probabilistic model in which setting dependent variables describing measuring instruments are correctly incorporated. We prove that this model does not restrict experimenters freedom of choice which is a prerequisite of science. Contextuality seems to be the rule and not an exception; thus, it should be carefully tested. | 翻訳日:2023-04-02 14:58:17 公開日:2021-08-27 |
# 量子ラビモデルに対する一般化断熱近似 Generalized adiabatic approximation to the quantum Rabi model ( http://arxiv.org/abs/2104.13062v2 ) ライセンス: Link先を確認 | Zi-Min Li and Murray T. Batchelor | (参考訳) 量子ラビモデル(QRM)は、2レベル系(量子ビット)と量子調和振動子の間の相互作用を記述する。
量子ビット周波数が高調波周波数より小さい極限では、QRMは断熱近似(AA)によってよく近似できる。
AAは単純で明確な物理的解釈のために広く使われている。
しかし、AAによって予測されるQRMスペクトルの準位交差は、正確な点から逸脱するラゲール多項式の零点によって決定される。
本稿では, レベル交差を正しく予測する新しいqrm近似を提案する。
これは、QRM と AA のラゲール多項式との分離された正確な解の間の驚くべき接続を利用する。
したがって,この手法をGAA(Generalized Adiabatic Approximation)と呼ぶ。
建設によって、GAAは常に正確な例外スペクトルを予測し、AAよりもはるかに大きなパラメータ状態において規則スペクトルを非常によく近似する。
この一般化されたアプローチは、単純かつ正確な方法でラビ型の光-物質相互作用モデルの族を扱うための枠組みを提供する。 The quantum Rabi model (QRM) describes the interaction between a two-level system (qubit) and a quantum harmonic oscillator. In the limit where the qubit frequency is smaller than the harmonic frequency, the QRM can be well approximated by the adiabatic approximation (AA). The AA is widely used due to its simplicity and explicit physical interpretation. However, the level crossings in the spectrum of the QRM predicted by the AA are determined by the zeros of Laguerre polynomials, which deviate from the exact points. We propose a new approximation to the QRM that predicts the level crossings correctly. This is done by exploiting a surprising connection between isolated exact solutions to the QRM and the Laguerre polynomials in the AA. We thus refer to this approach as the generalized adiabatic approximation (GAA). By construction, the GAA always predicts the exact exceptional spectrum and approximates the regular spectrum remarkably well in a much larger parameter regime than the AA. This generalized approach offers a framework to deal with the family of Rabi-type light-matter interaction models in a simple but accurate manner. | 翻訳日:2023-04-02 06:58:35 公開日:2021-08-27 |
# 量子場理論の紫外線構造。
第1部:量子力学 The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum Mechanics ( http://arxiv.org/abs/2105.11470v2 ) ライセンス: Link先を確認 | Djordje Radicevic | (参考訳) 本稿では,有限な非摂動的モデル(格子理論)から連続体量子論の出現を記述する精密辞書である格子-連続対応の体系的な構築において,オープニングサーボを発射する。
ここでは(0+1)Dの場の量子論、すなわち量子力学に焦点が当てられる。
主な概念的達成は、大きな有限ヒルベルト空間を持つ理論を、波動関数が所定の滑らかさとコンパクトさの制約を満たす部分理論に還元するための明示的かつ体系的な手続きである。
テイミングと呼ばれるこの還元は、事実上連続体対象空間上の量子力学を定義する。
適切な格子理論が成立すると、多くのよく知られた連続体の概念、例えば正準可換関係、相関関数の接触項、連続時空対称性、超対称性代数が明らかに現れる。
これらの全ては、現在のフレームワークを使って、"格子上での処理"である。
例えば、任意の超対称格子理論が消滅するウィッテン指数を持つ必要があることが証明されている。 This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence, a precise dictionary that describes the emergence of continuum quantum theories from finite, nonperturbatively defined models ("lattice theories"). Here the focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics. The main conceptual achievement is an explicit and systematic procedure for reducing a theory with a large but finite Hilbert space to a subtheory in which wavefunctions satisfy prescribed smoothness and compactness constraints. This reduction, here named taming, in effect defines quantum mechanics on a continuum target space. When appropriate lattice theories are tamed, many familiar continuum notions explicitly emerge, e.g. canonical commutation relations, contact terms in correlation functions, continuous spacetime symmetries, and supersymmetry algebras. All of these are thus "put on the lattice" using the present framework. This analysis also leads to further insights into old subjects: for example, it is proven that any supersymmetric lattice theory must have a vanishing Witten index. | 翻訳日:2023-03-29 23:14:30 公開日:2021-08-27 |
# 量子kibble-zurek機構:量子イジング鎖のクエンチ後のキンク相関 Quantum Kibble-Zurek mechanism: Kink correlations after a quench in the quantum Ising chain ( http://arxiv.org/abs/2106.07335v3 ) ライセンス: Link先を確認 | Rados{\l}aw J. Nowak and Jacek Dziarmaga | (参考訳) 量子イジングチェーン内の横磁場は、クエンチ時間$\tau_q$で特徴付けられる速度で、パラ-から強磁性相へ量子臨界点を越えて直線的に傾斜する。
ゼロ逆場における最終状態における連結キンク相関器を計算する。
コリレータは2つの項の和である: キブル・ズレーク(kz)の相関長さのみに依存する負の(反結合)ガウス語と、長さの2番目のスケールに依存する正の項。
第2の長さは、強磁性相を横切る次のランプの間、臨界点付近で励起された状態の強調によって延長される。
この解釈は、有限の待ち時間のために強磁性相で停止し、停止前と同じ速度で継続する線形ランプを考えることによって裏付けられる。
強調できる余分な時間は、待ち時間とともに漸近的に成長する長さの第二のスケールを増加させる。
この強調はまた、第2項の大きさを抑制し、$\tau_q$よりも長い待ち時間を無視する。
同じデファス化は、強磁性相において減速する滑らかなランプで得ることができる。
十分なデファス化を仮定すると、高次キンク相関器と強磁性相関関数も得られる。 The transverse field in the quantum Ising chain is linearly ramped from the para- to the ferromagnetic phase across the quantum critical point at a rate characterized by a quench time $\tau_Q$. We calculate a connected kink-kink correlator in the final state at zero transverse field. The correlator is a sum of two terms: a negative (anti-bunching) Gaussian that depends on the Kibble-Zurek (KZ) correlation length only and a positive term that depends on a second longer scale of length. The second length is made longer by dephasing of the state excited near the critical point during the following ramp across the ferromagnetic phase. This interpretation is corroborated by considering a linear ramp that is halted in the ferromagnetic phase for a finite waiting time and then continued at the same rate as before the halt. The extra time available for dephasing increases the second scale of length that asymptotically grows linearly with the waiting time. The dephasing also suppresses magnitude of the second term making it negligible for waiting times much longer than $\tau_Q$. The same dephasing can be obtained with a smooth ramp that slows down in the ferromagnetic phase. Assuming sufficient dephasing we obtain also higher order kink correlators and the ferromagnetic correlation function. | 翻訳日:2023-03-26 17:47:24 公開日:2021-08-27 |
# フラクタル幾何学上の位相次数、量子符号、量子計算 Topological Order, Quantum Codes and Quantum Computation on Fractal Geometries ( http://arxiv.org/abs/2108.00018v2 ) ライセンス: Link先を確認 | Guanyu Zhu and Tomas Jochym-O'Connor and Arpit Dua | (参考訳) n$次元に埋め込まれたフラクタル幾何学の位相次数について検討する。
特に、量子情報と幾何学のレンズを通して位相秩序の存在を診断する、すなわち、マクロな符号距離を持つ量子誤り訂正符号と等価性や、シストリック幾何学におけるマクロなシストルの存在を診断する。
まず、$\mathbb{Z}_N$ 位相順序が 2D に埋め込まれた任意のフラクタル上では生き残れないというノーゴー定理を証明する。
3次元またはそれ以上の空間次元に埋め込まれたフラクタル格子モデルに対し、$\mathbb{Z}_N$トポロジカル秩序は内部ホールの境界がループや膜励起のみを凝縮する場合に残る。
さらに、ループや膜励起のみを含み、従って$n$次元多様体上で自己補正されているモデルのクラスに対しては、トポロジカル次数は穴の境界のタイプによらず、大きな種類のフラクタルジオメトリに生存することを示す。
さらに,グローバルおよび高形式トポロジカル対称性への接続を利用して,フォールトトレラントな論理ゲートを構築する。
特に、3次元ハウスドルフ次元を持つフラクタル符号のクラスに埋め込まれた大域対称性に対応する論理CCZゲートが、任意に小さな$\epsilon$に対して$D_H=2+\epsilon$に近づき、従って、符号距離が$d$である空間オーバーヘッド$\Omega(d^{2+\epsilon})$のみを必要とする。
これにより、ループ励起とガッピングされたドメイン壁の組み合わせのみを凝縮する、あるエキゾチックなガッピング境界が驚くほど発見される。
さらに論理的な$\text{c}^{p}\text{z}$gatesを、$n$dに埋め込まれたフラクタルコードに対して$p\le n-1$で得る。
特に、クリフォード階層の$n^\text{th}$レベルにおける論理的な$\text{C}^{n-1}\text{Z}$に対して、空間オーバーヘッドを$\Omega(d^{n-1+\epsilon})$に減らすことができる。
数学的にはフラクタルのマクロ相対シストルに対応している。 We investigate topological order on fractal geometries embedded in $n$ dimensions. In particular, we diagnose the existence of the topological order through the lens of quantum information and geometry, i.e., via its equivalence to a quantum error-correcting code with a macroscopic code distance or the presence of macroscopic systoles in systolic geometry. We first prove a no-go theorem that $\mathbb{Z}_N$ topological order cannot survive on any fractal embedded in 2D. For fractal lattice models embedded in 3D or higher spatial dimensions, $\mathbb{Z}_N$ topological order survives if the boundaries of the interior holes condense only loop or membrane excitations. Moreover, for a class of models containing only loop or membrane excitations, and are hence self-correcting on an $n$-dimensional manifold, we prove that topological order survives on a large class of fractal geometries independent of the type of hole boundaries. We further construct fault-tolerant logical gates using their connection to global and higher-form topological symmetries. In particular, we have discovered a logical CCZ gate corresponding to a global symmetry in a class of fractal codes embedded in 3D with Hausdorff dimension asymptotically approaching $D_H=2+\epsilon$ for arbitrarily small $\epsilon$, which hence only requires a space-overhead $\Omega(d^{2+\epsilon})$ with $d$ being the code distance. This in turn leads to the surprising discovery of certain exotic gapped boundaries that only condense the combination of loop excitations and gapped domain walls. We further obtain logical $\text{C}^{p}\text{Z}$ gates with $p\le n-1$ on fractal codes embedded in $n$D. In particular, for the logical $\text{C}^{n-1}\text{Z}$ in the $n^\text{th}$ level of Clifford hierarchy, we can reduce the space overhead to $\Omega(d^{n-1+\epsilon})$. Mathematically, our findings correspond to macroscopic relative systoles in fractals. | 翻訳日:2023-03-20 08:49:03 公開日:2021-08-27 |
# スマートプロトコル --ロバストで普遍的な量子計算のためのグローバルフィールドのパルスエンジニアリング The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation ( http://arxiv.org/abs/2108.00776v3 ) ライセンス: Link先を確認 | Ingvild Hansen, Amanda E. Seedhouse, Andre Saraiva, Arne Laucht, Andrew S. Dzurak and Chih Hwan Yang | (参考訳) 量子ビット配列のグローバル制御戦略は、スケーラブルな量子コンピューティングへの有望な経路である。
連続波グローバルフィールドは、背景雑音からキュービットを分離する。
しかし、このアプローチは配列内の個々の量子ビットのパラメータの可変性によって制限される。
ここでは、全アレイに同時に適用された大域場を変調することにより、大規模システムで期待される問題である量子共振周波数やマイクロ波振幅変動の統計散乱に敏感でない量子ビットを符号化できることを示す。
このアプローチをsmart (sinusoidally modulated, always rotation and tailored) qubit protocolと命名します。
我々は,コヒーレンス時間の改善を確実に提供する大域体に,量子ビットの最適変調条件が存在することを示した。
シリコン量子ドットにおけるスピンの例としては、個々の量子ビットのスピン軌道結合と近傍のドットのスピン間の交換結合を制御することにより、普遍的な1ビットと2ビットの制御が電気的に達成される。
この研究は、グローバルフィールドにおける高忠実な量子ビット演算方式を提供し、スピンベースの量子コンピュータアーキテクチャのスケーラビリティを著しく向上させる。 Global control strategies for arrays of qubits are a promising pathway to scalable quantum computing. A continuous-wave global field provides decoupling of the qubits from background noise. However, this approach is limited by variability in the parameters of individual qubits in the array. Here we show that by modulating a global field simultaneously applied to the entire array, we are able to encode qubits that are less sensitive to the statistical scatter in qubit resonance frequency and microwave amplitude fluctuations, which are problems expected in a large scale system. We name this approach the SMART (Sinusoidally Modulated, Always Rotating and Tailored) qubit protocol. We show that there exist optimal modulation conditions for qubits in a global field that robustly provide improved coherence times. We discuss in further detail the example of spins in silicon quantum dots, in which universal one- and two-qubit control is achieved electrically by controlling the spin-orbit coupling of individual qubits and the exchange coupling between spins in neighbouring dots. This work provides a high-fidelity qubit operation scheme in a global field, significantly improving the prospects for scalability of spin-based quantum computer architectures. | 翻訳日:2023-03-20 03:20:07 公開日:2021-08-27 |
# ICTに基づくハイブリッドモデルによる教育学習環境のモデル化 Modeling Pedagogical Learning Environment with Hybrid Model based on ICT ( http://arxiv.org/abs/2108.07793v3 ) ライセンス: Link先を確認 | Al Maruf Hassan and Istiak Ahmed Mondal | (参考訳) ペダゴギー(Pedagogy)は、教育者からの教育の倫理と文化、および学習者の学習を扱う方法である。
Pedagogy of Information and Communications Technology (ICT)は、ICTに基づく教師、子供、学習環境間の相互作用を指す。
指導戦略、指導行動、判断、決定の理論と実践を扱う分野である。
それはまた、学生の理解とニーズ、および個々の学生の背景と利益でもある。
本稿ではICT教育の観点から教育学習環境を設計した。
ICT教育の方法論では、教育は異なる要素間の相互作用を含む。
この手法は、利便性を教育環境に異なる方法で伝播させる。
ICT開発プログラムのためのハイブリッドモデルも開発中です。
ハイブリッドモデルは、標準、ステージ、年レベル、クラスレベルの組み合わせを表し、それを1つの傘にまとめます。
我々は、ICT教育の観点から理論的に教育学習環境を構築し、成果に基づくICT学習を考慮した。
成果に基づく教育は、世界中のあらゆる国を構築するための基本的な要素である。 Pedagogy is a method that handles the ethos and culture of instruction from educators and the learning of learners. Pedagogy of Information and Communications Technology (ICT) refers to the interactions among the teacher, children, and learning environment based on ICT. It is a discipline that deals with the theory and practice of teaching strategies, teaching actions, teaching judgments, and decisions. It is also the understanding and needs of students as well as the background and interests of an individual one. In this paper, we have designed the pedagogical learning environment from the perspective of ICT education. In our methodology of the pedagogy for ICT, education includes the interaction among different elements. The methodology improves to propagate convenience differently into the educational environment. We are also building a hybrid model for the ICT development program. The hybrid model represents the combination of standards, stages, year level, and class level as well as brings it into one umbrella. We have constructed the pedagogical learning environment theoretically from the perspective of ICT education to the consideration of outcome-based ICT learning. Outcome-based education is a fundamental element for building any nation completely around the globe. | 翻訳日:2023-03-18 23:19:32 公開日:2021-08-27 |
# ベルの理論, 非計算可能性, コンフォーマルサイクルコスモロジー:量子重力に対するトップダウンアプローチ Bell's Theorem, Non-Computability and Conformal Cyclic Cosmology: A Top-Down Approach to Quantum Gravity ( http://arxiv.org/abs/2108.10902v2 ) ライセンス: Link先を確認 | T.N. Palmer | (参考訳) 本稿では, ホーキングボックスの非ハミルトン位相空間フロー, コンフォーマルサイクルコスモロジー, 非計算性, 重力誘起量子状態還元といったロジャー・ペンローズの考えを, 量子重力に対する急激な非伝統的なアプローチを提案するために, 不変集合理論 (IST) を含む。
ISTにおいて、物理学の基本法則は、宇宙の位相像全体の幾何学を記述している:「量子」過程は、より大規模な不均一な幾何学を伴う「重力」過程と関連する。
これにより、一般相対性理論の重要な成分である決定論と局所因果関係を捨てることなく、ベルの不等式の実験的違反を説明することができる。
ist のアンサンブルは複素数の有限集合 $\mathbb c_p$ 上の複素ヒルベルト状態によって記述され、ここで $p$ は大きな有限整数である。
有限次元ヒルベルト空間の量子力学は、$p \rightarrow \infty$ のとき特異極限として現れる。
一般相対性理論の場方程式に小さな修正を加えて IST と整合性を持たせる。 This paper draws on a number of Roger Penrose's ideas - including the non-Hamiltonian phase-space flow of the Hawking Box, Conformal Cyclic Cosmology, non-computability and gravitationally induced quantum state reduction - in order to propose a radically unconventional approach to quantum gravity: Invariant Set Theory (IST). In IST, the fundamental laws of physics describe the geometry of the phase portrait of the universe as a whole: "quantum" process are associated with fine-scale fractal geometry, "gravitational" process with larger-scale heterogeneous geometry. With this, it becomes possible to explain the experimental violation of Bell Inequalities without having to abandon key ingredients of general relativity: determinism and local causality. Ensembles in IST can be described by complex Hilbert states over a finite set $\mathbb C_p$ of complex numbers, where $p$ is a large finite integer. The quantum mechanics of finite-dimensional Hilbert spaces is emergent as a singular limit when $p \rightarrow \infty$. A small modification to the field equations of general relativity is proposed to make it consistent with IST. | 翻訳日:2023-03-17 07:29:30 公開日:2021-08-27 |
# 進化的アルゴリズムによるプログラム合成の最近の進歩 Recent Developments in Program Synthesis with Evolutionary Algorithms ( http://arxiv.org/abs/2108.12227v1 ) ライセンス: Link先を確認 | Dominik Sobania, Dirk Schweim, Franz Rothlauf | (参考訳) コンピュータプログラムの自動生成は、進化計算の分野で実践的な関係を持つ主要な応用の1つである。
プログラム合成技術を使えば、ソフトウェア開発者が日々の作業でサポートできるだけでなく、プログラミング知識のないユーザでも反復的なタスクを自動化し、独自の新機能を実装することができる。
近年,進化的アルゴリズムに基づく新しいプログラム合成手法が数多く提案され,共通ベンチマーク問題に基づいて評価されている。
そこで本研究では,関連する進化的プログラム合成手法を同定し,その性能を詳細に解析する。
最も影響力のあるアプローチは、スタックベース、文法誘導、線形遺伝プログラミングである。
さらに、与えられた入力から正しい出力への単純なマッピングがある場合、これらのアプローチはベンチマーク問題でうまく機能する。
このマッピングが複雑である問題、例えば、問題が複数のサブ問題で構成されている場合や、正しい解の反復/再帰を必要とする場合、結果が悪化する傾向がある。
その結果, 今後の課題として, プログラムのアウトプットを用いて解の質を評価するだけでなく, 解への道筋(例えば, 正しく解いた部分問題など)を求める。 The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify in this work the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming. Further, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several sub-problems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution (e.g., correctly solved sub-problems). | 翻訳日:2023-03-17 01:12:36 公開日:2021-08-27 |
# 全光学キャットコード量子誤り訂正 All-optical cat-code quantum error correction ( http://arxiv.org/abs/2108.12225v1 ) ライセンス: Link先を確認 | Jacob Hastrup and Ulrik Lund Andersen | (参考訳) 猫符号は、多くのボソニック系において支配的なエラー機構である損失に対する補正を可能にするため、ボソニック量子誤り訂正のための有望な符号化スキームである。
しかし、符号化された論理情報を妨害することなく効率よく損失を検知するためには、励振数のパリティ測定を実装する必要がある。
このような測定は超伝導トランスモンアンシラを用いてマイクロ波系で実証されているが、光学系でどのように実装できるかは未だ分かっていない。
本稿では,光学的設定に適した要素を用いて,cat符号のテレポーテーションに基づく誤り訂正方式を提案する。
この方式は猫の状態の振幅を回復しながら単一光子損失を検出し補正し、損失チャネルにおける誤差の蓄積を著しく抑制する。 The cat code is a promising encoding scheme for bosonic quantum error correction as it allows for correction against losses--the dominant error mechanism in most bosonic systems. However, for losses to be detected efficiently without disturbing the encoded logical information, one needs to implement a parity measurement of the excitation number. While such a measurement has been demonstrated in the microwave regime using a superconducting transmon ancilla, it has remained unclear how it can be implemented in the optical regime. Here, we introduce a teleportation-based error-correction scheme for the cat code, using elements suitable for an optical setting. The scheme detects and corrects single-photon losses while restoring the amplitude of the cat states, thereby greatly suppressing the accumulation of errors in lossy channels. | 翻訳日:2023-03-17 01:12:14 公開日:2021-08-27 |
# 1次元ポアソン方程式解のための量子アルゴリズムの最適化とノイズ解析 Optimization and Noise Analysis of the Quantum Algorithm for Solving One-Dimensional Poisson Equation ( http://arxiv.org/abs/2108.12203v1 ) ライセンス: Link先を確認 | Guolong Cui, Zhimin Wang, Shengbin Wang, Shangshang Shi, Ruimin Shang, Wendong Li, Zhiqiang Wei, Yongjian Gu | (参考訳) 微分方程式の解法は、量子コンピューティングの最も有望な応用の1つである。
近年,1次元ポアソン方程式を解くために,量子算術やハミルトニアンシミュレーションを行う必要のない効率的な量子アルゴリズムを提案する。
本稿では、このアルゴリズムをさらに発展させ、ノイズの多い中間スケール量子(NISQ)デバイスにおける実際の応用に近づける。
この目的のために,まず,回路の深さをn2からnに減らし,正弦変換を行う新しい手法を開発し,それに基づいてアルゴリズムを最適化する。
次に,ibm qiskit toolkitを用いて,実量子デバイスに存在する共通のノイズがアルゴリズムに与える影響を分析する。
位相減衰ノイズはアルゴリズムにほとんど影響を与えないのに対し,ビットフリップノイズは最も影響が大きいことがわかった。
さらに、量子ゲートのしきい値誤差が得られ、回路出力の忠実度が90%以上になる。
ノイズ解析の結果は,次のアルゴリズムの誤り軽減と誤り訂正の作業に優れたガイダンスを提供する。
本研究で開発されたノイズ分析法は,NISQデバイス上で実行される他のアルゴリズムにも利用できる。 Solving differential equations is one of the most promising applications of quantum computing. Recently we proposed an efficient quantum algorithm for solving one-dimensional Poisson equation avoiding the need to perform quantum arithmetic or Hamiltonian simulation. In this letter, we further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices. To this end, we first develop a new way of performing the sine transformation, and based on it the algorithm is optimized by reducing the depth of the circuit from n2 to n. Then, we analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit. We find that the phase damping noise has little effect on our algorithm, while the bit flip noise has the greatest impact. In addition, threshold errors of the quantum gates are obtained to make the fidelity of the circuit output being greater than 90%. The results of noise analysis will provide a good guidance for the subsequent work of error mitigation and error correction for our algorithm. The noise-analysis method developed in this work can be used for other algorithms to be executed on the NISQ devices. | 翻訳日:2023-03-17 01:11:36 公開日:2021-08-27 |
# 特異値分解による損失Nポートデバイスにおける量子干渉の一般化 A generalized approach to quantum interference in lossy N-port devices via a singular value decomposition ( http://arxiv.org/abs/2108.12160v1 ) ライセンス: Link先を確認 | Osmery Hern\'andez, I\~nigo Liberal | (参考訳) 散逸の存在下での量子干渉のモデル化は、量子技術の重要な側面である。
線形装置のモデルへの散逸は、光子損失の有害な影響を評価するだけでなく、散逸駆動の量子状態変換の研究も可能である。
しかし、一般損失のnポートネットワークで量子干渉を特徴付ける入出力関係を確立することは重要な理論的課題である。
本稿では,任意の損失線形デバイスに対する入出力関係の効率的な計算を可能にする特異値分解(SVD)に基づく一般的な手順を提案する。
さらに,SVDが線形光学デバイスの動作原理を直感的に記述する方法について述べる。
本手法の適用性は,特異および零点散乱行列を持つデバイスを含む一般の相互および非相互損失線形デバイスの入出力関係を評価することによって示す。
我々は、複雑なデバイスにおける量子干渉の研究や、線形損失デバイスにおける光子損失の現実的なモデリングの動機となることを期待する。 Modeling quantum interference in the presence of dissipation is a critical aspect of quantum technologies. Including dissipation into the model of a linear device enables for assesing the detrimental impact of photon loss, as well as for studying dissipation-driven quantum state transformations. However, establishing the input-output relations characterizing quantum interference at a general lossy N-port network poses important theoretical challenges. Here, we propose a general procedure based on the singular value decomposition (SVD), which allows for the efficient calculation of the input-output relations for any arbitrary lossy linear device. In addition, we show how the SVD provides an intuitive description of the principle of operation of linear optical devices. We illustrate the applicability of our method by evaluating the input-output relations of popular reciprocal and nonreciprocal lossy linear devices, including devices with singular and nilpotent scattering matrices. We expect that our procedure will motivate future research on quantum interference in complex devices, as well as the realistic modelling of photon loss in linear lossy devices. | 翻訳日:2023-03-17 01:10:51 公開日:2021-08-27 |
# 真空絞り光から明るい波長可変青色絞り光への量子周波数変換と高次空間モード Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes ( http://arxiv.org/abs/2108.12140v1 ) ライセンス: Link先を確認 | Hugo Kerdoncuf, Jesper B. Christensen, and Mikael Lassen | (参考訳) 量子周波数変換は、量子コヒーレンスを保ちながら光学量子状態の周波数をシフトする過程であり、非古典的な波長の光を生成するために用いられる。
1064nmの真空硬化状態と850nmのチューナブルポンプ源との高効率な総周波発生(SFG)に基づく実験結果について, 472〜nmの明るい励起光の発生に対して, 現在使用されている非線形結晶の位相マッチングによって制限されている850nm$\pm$50 nmについて述べる。
SFGプロセスは、量子コヒーレンスの一部を4.2($\pm0.2$)~dB 1064nm真空加圧状態として保存し、1.6($\pm$0.2)~dBチューニング可能な明るい青色加圧状態に変換する。
さらに,1064nm真空加圧状態の同時周波数モードと空間モード変換を示し,TEM$_{01}$モードとTEM$_{02}$モードでそれぞれ1.1($\pm$0.2)~dBと0.4($\pm$0.2)~dBを測定する。
さらなる発展により、センシング、メトロロジー、分光、イメージングといった分野において、ソースが使用される可能性があると予測する。 Quantum frequency conversion, the process of shifting the frequency of an optical quantum state while preserving quantum coherence, can be used to produce non-classical light at otherwise unapproachable wavelengths. We present experimental results based on highly efficient sum-frequency generation (SFG) between a vacuum squeezed state at 1064 nm and a tunable pump source at 850 nm $\pm$ 50 nm for the generation of bright squeezed light at 472~nm $\pm$ 4~nm, currently limited by the phase-matching of the used nonlinear crystal. We demonstrate that the SFG process conserves part of the quantum coherence as a 4.2($\pm0.2$)~dB 1064 nm vacuum squeezed state is converted to a 1.6($\pm$0.2)~dB tunable bright blue squeezed state. We furthermore demonstrate simultaneous frequency- and spatial-mode conversion of the 1064-nm vacuum squeezed state, and measure 1.1($\pm$0.2)~dB and 0.4($\pm$0.2)~dB of squeezing in the TEM$_{01}$ and TEM$_{02}$ modes, respectively. With further development, we foresee that the source may find use within fields such as sensing, metrology, spectroscopy, and imaging. | 翻訳日:2023-03-17 01:10:33 公開日:2021-08-27 |
# 複数のスピンドメインを経由する貯水池支援エネルギー移動 Reservoir-assisted energy migration through multiple spin-domains ( http://arxiv.org/abs/2108.12119v1 ) ライセンス: Link先を確認 | Josephine Dias, Christopher W. W\"achtler, Victor M. Bastidas, Kae Nemoto, William J. Munro | (参考訳) ノードのネットワークを通してのエネルギー伝達は、自然と現在の技術の両方の動作に基礎を置いている。
伝統的に、ネットワーク内のノードはそれらを接続するチャネルに結合され、そのノードがターゲットのサイトに到達するまで、ノードからチャネルへエネルギーが渡される。
ここでは、チャネルを一対のノードと相互作用する集合環境(または実際に貯水池)に置き換える、別のアプローチを紹介します。
特定のノードにあるエネルギーが、その環境が温帯でなくても、ターゲットノードにどのように到達できるかを示す。
さらに, この移行は, 貯水池に結合した単一スピンに関連する減衰速度よりも, はるかに早い時間スケールで発生することを示した。
私たちのアプローチは、システムと環境とそれらに関連する対称性の両方を調整し、将来の量子技術への新しい方向性を提供する能力を示しています。 The transfer of energy through a network of nodes is fundamental to both how nature and current technology operates. Traditionally we think of the nodes in a network being coupled to channels that connect them and then energy is passed from node to channel to node until it reaches its targeted site. Here we introduce an alternate approach to this where our channels are replaced by collective environments (or actually reservoirs) which interact with pairs of nodes. We show how energy initially located at a specific node can arrive at a target node - even though that environment may be at zero temperate. Further we show that such a migration occurs on much faster time scales than the damping rate associated with a single spin coupled to the reservoir. Our approach shows the power of being able to tailor both the system & environment and the symmetries associated with them to provide new directions for future quantum technologies. | 翻訳日:2023-03-17 01:09:47 公開日:2021-08-27 |
# 量子化学における変分アルゴリズムの性能に及ぼす雑音の影響 The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry ( http://arxiv.org/abs/2108.12388v1 ) ライセンス: Link先を確認 | Waheeda Saib, Petros Wallden, Ismail Akhalwaya | (参考訳) 変分量子アルゴリズムはノイズ量子システムでの使用に適している。
最も重要なユースケースの1つは、変分量子固有解法(VQE)を用いた物質の量子シミュレーションである。
VQE性能を最適化するには、適切なパラメータ化量子回路(アンサッツ)を選択する必要がある。
本研究では,量子ハードウェアの知識を組み込んだansatzeのクラス,すなわちハードウェア効率のよいansatzeについて検討する。
ハードウェア効率のよい ansatze の性能はノイズによって異なる影響を受けるため,本研究の目的は,ansatz が実際により正確な結果を与えるかを評価するためのノイズの影響を検討することである。
まず,各ansatzファミリーのパフォーマンスをベンチマークし,評価することにより,ハードウェア効率の異なるansatzeに対するノイズの影響について検討する。
(i)VQEおよびそれを用いた化学応用
(ii)最近確立された「表現可能性」の指標による。
その結果、最適回路のランキングはノイズの存在下では一定に保たないことが示された。
第2に, vqeを用いた化学応用において, 表現可能性と同一回路の性能の相関研究を行い, この文脈における表現可能性尺度の適合性を評価する。
シミュレーションにより, 量子化学におけるパラメータ化量子回路の有効性を定量的に評価するには, 表現性は不十分であることが示唆された。
第3に,様々な量子デバイスノイズモデルがansatzファミリーの最適順序に与える影響について評価する。
興味深いことに、どのアンサッツが最適かを決めるには、同じ量子ハードウェアファミリー内でも使用される特定のハードウェアを考慮する必要がある。 Variational quantum algorithms are suitable for use on noisy quantum systems. One of the most important use-cases is the quantum simulation of materials, using the variational quantum eigensolver (VQE). To optimize VQE performance, a suitable parameterized quantum circuit (ansatz) must be selected. We investigate a class of ansatze that incorporates knowledge of the quantum hardware, namely the hardware efficient ansatze. The performance of hardware efficient ansatze is affected differently by noise, and our goal is to study the effect of noise on evaluating which ansatz gives more accurate results in practice. First, we study the effect of noise on the different hardware efficient ansatze by benchmarking and ranking the performance of each ansatz family (i) on a chemistry application using VQE and (ii) by the recently established metric of "expressibility". The results demonstrate the ranking of optimal circuits does not remain constant in the presence of noise. Second, we evaluate the suitability of the expressibility measure in this context by performing a correlation study between expressibility and the performance of the same circuits on a chemistry application using VQE. Our simulations reveal a weak correlation and therefore demonstrate that expressibility is not an adequate measure to quantify the effectiveness of parameterized quantum circuits for quantum chemistry. Third, we evaluate the effect of different quantum device noise models on the ordering of which ansatz family is best. Interestingly, we see that to decide which ansatz is optimal for use, one needs to consider the specific hardware used even within the same family of quantum hardware. | 翻訳日:2023-03-17 01:03:46 公開日:2021-08-27 |
# 乱流大気中のInce-Gauss光子:ビームレジリエンスに及ぼす量子数の影響 Ince-Gauss Photons in Turbulent Atmosphere: Effect of quantum numbers on beam resilience ( http://arxiv.org/abs/2108.12322v1 ) ライセンス: Link先を確認 | Emmanuel Narv\'aez Casta\~neda, Roberto Ram\'irez Alarc\'on, Jos\'e C\'esar Guerra V\'azquez, Imad Agha, Qiwen Zhan, and William N. Plick | (参考訳) 本研究では, 乱流中の情報担体として, 軌道角運動量を持つパラ軸波方程式の楕円解であるince-gaussビームの性質と性能に関する広範囲な解析を行う。
これらのビームの伝播の数値シミュレーションを行い, ビームの剛性に及ぼす秩序, 度, 楕円性パラメータの影響に着目した。
モードが構築される基底の選択はモード性能に大きな影響を与えず、代わりに順序と次数の組み合わせによって強く影響を受けることが判明した。 In this work, we present an extensive analysis on the nature and performance of Ince-Gauss beams, elliptical solutions of the paraxial wave equation that have orbital angular momentum, as information carriers in turbulent atmosphere. We perform numerical simulations of the propagation of these beams, and focus on the effects that the order, degree and ellipticity parameters have on the robustness of the beams. We find that the choice of basis in which a mode is constructed does not greatly influence the mode performance and it is instead strongly affected by the combination of order and degree values. | 翻訳日:2023-03-17 01:01:51 公開日:2021-08-27 |
# 人工ニューラルネットワークを用いたBLDCモータ速度制御の解析 Artificial Neural Networks Based Analysis of BLDC Motor Speed Control ( http://arxiv.org/abs/2108.12320v1 ) ライセンス: Link先を確認 | Porselvi T, Sai Ganesh CS, and Aouthithiye Barathwaj SR Y | (参考訳) 人工ニューラルネットワーク (artificial neural network,ann) は、入力、出力、ノード群を含む多数の隠れレイヤを持つ、単純なネットワークである。
電気・電子工学におけるANNアルゴリズムの実装は、ANNがバイナリデータをより正確に扱うため、期待される結果に常に満足する。
ブラシレス直流モータ(bldcモータ)は、直流電流をモータ巻線に切り替え、磁場を生成するために電子閉ループ制御器を使用する。
BLDCモータは、その高速、低保守、適切なトルク能力のために様々な用途を見出す。
性能が良く、パワーコンバータによる速度制御が容易であるため、他のモーターよりも非常に好まれる。
本稿では,モータ巻線を駆動するブリッジコンバータの直流入力電圧を変化させ,速度制御を行うbldcモータの速度制御手法を提案する。
制御は、piベースのスピードコントローラを使用して行われる。
モータはmatlab/simulinkでモデル化され、piコントローラにより速度制御が得られる。
そして、EMF信号、ロータ速度、電磁トルク、ホールエフェクト信号、PWMおよびEMF信号シミュレーションを得る。
この取得したデータはバイナリ人工ニューラルネットワークに入力され、その結果、ANNモデルはシミュレーション結果に近い対応するパラメータを予測する。
数学的シミュレーションとデータベース予測の両方が良好な結果をもたらす Artificial Neural Network (ANN) is a simple network that has an input, an output, and numerous hidden layers with a set of nodes. Implementation of ANN algorithms in electrical, and electronics engineering always satisfies with the expected results as ANN handles binary data more accurately. Brushless Direct Current motor (BLDC motor) uses electronic closed-loop controllers to switch DC current to the motor windings and produces the magnetic fields. The BLDC motor finds various applications owing to its high speed, low maintenance and adequate torque capability. They are highly preferred than the other motors because of their better performance and it is easy to control their speed by Power Converters. This article presents a method of speed control of BLDC motors where speed is controlled by changing the DC input voltage of the bridge converter that feeds the motor winding. The control is done by using a PI based speed controller. The motor is modeled in the MATLAB/Simulink and the speed control is obtained with a PI controller. EMF signals, rotor speed, electromagnetic torque, Hall Effect signals, PWM and EMF signals simulations are then obtained. This acquired data is then fed into binary artificial neural networks and as a result, the ANN model predicts the corresponding parameters close to the simulation results. Both the mathematical based simulation and data based prediction gives satisfactory results | 翻訳日:2023-03-17 01:01:40 公開日:2021-08-27 |
# QCD因子化と量子力学 QCD Factorization and Quantum Mechanics ( http://arxiv.org/abs/2108.12319v1 ) ライセンス: Link先を確認 | C. A. Aidala and T. C. Rogers | (参考訳) 量子情報科学の言語で説明されているqcd分解を見つけることは珍しい。
しかし、高エネルギーqcdプロセスにおける因子分解の問題とその破壊が、デコヒーレンスや絡み合いといった現象とどのように関係しているかを議論する。
いくつかの例を詳述し、基本量子力学や量子情報科学に精通した用語で説明する。 It is unusual to find QCD factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entanglement. We will elaborate with several examples and explain them in terms familiar from basic quantum mechanics and quantum information science. | 翻訳日:2023-03-17 01:01:20 公開日:2021-08-27 |
# 真の光子数分解検出を必要としない複合双対ビーム Compound twin beams without the need of genuine photon-number-resolving detection ( http://arxiv.org/abs/2108.12449v1 ) ライセンス: Link先を確認 | Jan Perina Jr, Antonin Cernoch, Jan Soubusta | (参考訳) 単一光子感度のオン/オフ検出器が検出に有効となるように、より多数の同一のツインビームからより強力なマルチモードツインビームを構築するためのスキームについて検討した。
非古典性を含むこれらの複合双対ビームの統計的性質は、数百光子対までの強度に対して解析される。
その特性は、実験で光子数分解検出器を必要とする本物の双子のビームと比較される。
サブポアソニアン光の発生とサブショットノイズ精度による吸収の測定にこのような複合双対ビームを用いることを解析した。
実験データを解釈するために, 複合双対ビームに適した理論モデルを開発した。 The scheme for building stronger multi-mode twin beams from a greater number of identical twin beams sufficiently weak so that single-photon sensitive on/off detectors suffice in their detection is studied. Statistical properties of these compound twin beams involving the non-classicality are analyzed for intensities up to hundreds of photon pairs. Their properties are compared with those of the genuine twin beams that require photon-number-resolving detectors in their experimental investigations. The use of such compound twin beams for the generation of sub-Poissonian light and measurement of absorption with sub-shot-noise precision is analyzed. A suitable theoretical model for the compound twin beams is developed to interpret the experimental data. | 翻訳日:2023-03-17 00:53:40 公開日:2021-08-27 |
# スパイクニューラルネットワークを多コアニューロモルフィックハードウェアにマッピングするための設計フロー A Design Flow for Mapping Spiking Neural Networks to Many-Core Neuromorphic Hardware ( http://arxiv.org/abs/2108.12444v1 ) ライセンス: Link先を確認 | Shihao Song, M. Lakshmi Varshika, Anup Das, and Nagarajan Kandasamy | (参考訳) マルチコアニューロモルフィックハードウェアの設計は、大規模機械学習モデルの実行が期待されているため、ますます複雑になっています。
設計の複雑さに対処するためには、コンピューティングコアのバッファ要求を大幅に増大させることなく、レイテンシやスループットなどのリアルタイムパフォーマンスを保証するために、予測可能な設計フローが必要である。
同期データフローグラフ(SDFG)は、ストリーミングアプリケーションのマルチプロセッサシステムへの予測可能なマッピングに使用される。
本稿では,スループットとバッファサイズとのトレードオフを探索する目的で,SDFGに基づくスパイキングニューラルネットワーク(SNN)を多コアニューロモルフィックハードウェアにマッピングする設計フローを提案する。
提案する設計フローは,Kernighan-Linグラフ分割ヒューリスティックに基づく反復的分割アプローチを統合し,各クラスタをハードウェアのコアにマッピング可能なSNNクラスタを生成する。
パーティショニングアプローチはクラスタ間スパイク通信を最小限にし、ハードウェアの共有インターコネクトのレイテンシを改善する。
次に、設計フローは、スループットとバッファサイズの設計空間を探索する進化的アルゴリズムであるParticle Swarm Optimization (PSO)のインスタンスを使用して、クラスタをコアにマップする。
paretoの最適マッピングは設計フローから保持され、システム設計者は設計のスループットとバッファサイズの要求を満たすparetoマッピングを選択することができる。
5つの大規模畳み込みニューラルネットワーク(CNN)モデルを用いて設計フローを評価する。
その結果,最新のデータフローベースのマッピングソリューションと比較して,最大スループットが63%向上し,バッファサイズが10%削減された。 The design of many-core neuromorphic hardware is getting more and more complex as these systems are expected to execute large machine learning models. To deal with the design complexity, a predictable design flow is needed to guarantee real-time performance such as latency and throughput without significantly increasing the buffer requirement of computing cores. Synchronous Data Flow Graphs (SDFGs) are used for predictable mapping of streaming applications to multiprocessor systems. We propose an SDFG-based design flow for mapping spiking neural networks (SNNs) to many-core neuromorphic hardware with the objective of exploring the tradeoff between throughput and buffer size. The proposed design flow integrates an iterative partitioning approach, based on Kernighan-Lin graph partitioning heuristic, creating SNN clusters such that each cluster can be mapped to a core of the hardware. The partitioning approach minimizes the inter-cluster spike communication, which improves latency on the shared interconnect of the hardware. Next, the design flow maps clusters to cores using an instance of the Particle Swarm Optimization (PSO), an evolutionary algorithm, exploring the design space of throughput and buffer size. Pareto optimal mappings are retained from the design flow, allowing system designers to select a Pareto mapping that satisfies throughput and buffer size requirements of the design. We evaluated the design flow using five large-scale convolutional neural network (CNN) models. Results demonstrate 63% higher maximum throughput and 10% lower buffer size requirement compared to state-of-the-art dataflow-based mapping solutions. | 翻訳日:2023-03-17 00:53:13 公開日:2021-08-27 |
# 機械学習を用いた量子熱機械の最適制御 Optimal control of quantum thermal machines using machine learning ( http://arxiv.org/abs/2108.12441v1 ) ライセンス: Link先を確認 | Ilia Khait, Juan Carrasquilla, Dvira Segal | (参考訳) 最適熱力学過程の同定は、その開始以来熱力学の本質である。
本稿では、機械学習(ml)ツールである微分可能プログラミング(dp)を用いて、量子熱機械における有限時間熱力学プロセスを最適化できることを示す。
我々は、時間依存調和振動子を動作流体とするパラダイム的量子オットーエンジンを動作流体とし、staプロトコルに基づいて構築する。
制約付き最適化タスクとしてsta駆動プロトコルを定式化し,最適な運転プロファイルを求めるためにdpを適用する。
提案方式では,従来のプロトコルよりも優れた圧縮および拡張ストロークのプロファイルを探索する。
さらに, MLアルゴリズムを用いて, STA駆動の直感的かつ直感的なエネルギーコストが基本的欠陥に悩まされることを示し, コスト関数の代替構成で解決する。
提案手法と実験結果から,mlはハード制約量子制御問題の解法と,その理論的基礎を考案し評価する上で有益であることが示された。 Identifying optimal thermodynamical processes has been the essence of thermodynamics since its inception. Here, we show that differentiable programming (DP), a machine learning (ML) tool, can be employed to optimize finite-time thermodynamical processes in a quantum thermal machine. We consider the paradigmatic quantum Otto engine with a time-dependent harmonic oscillator as its working fluid, and build upon shortcut-to-adiabaticity (STA) protocols. We formulate the STA driving protocol as a constrained optimization task and apply DP to find optimal driving profiles for an appropriate figure of merit. Our ML scheme discovers profiles for the compression and expansion strokes that are superior to previously-suggested protocols. Moreover, using our ML algorithm we show that a previously-employed, intuitive energetic cost of the STA driving suffers from a fundamental flaw, which we resolve with an alternative construction for the cost function. Our method and results demonstrate that ML is beneficial both for solving hard-constrained quantum control problems and for devising and assessing their theoretical groundwork. | 翻訳日:2023-03-17 00:52:49 公開日:2021-08-27 |
# 非同一性感染症の集団検査 Group Testing with Non-identical Infection Probabilities ( http://arxiv.org/abs/2108.12418v1 ) ライセンス: Link先を確認 | Mustafa Doger and Sennur Ulukus | (参考訳) 個人が独立して障害を負うが、同一の確率を持たないゼロエラー確率型グループテスト問題を考える。
そこで我々は,実験対象の個人集合を構築するための欲求集合形成法を提案する。
提案する集合生成法を再帰的に利用する適応型グループテストアルゴリズムを開発した。
本稿では,提案アルゴリズムの試験数に関する新しい上限を証明した。
数値的な結果から,我々のアルゴリズムはアートの状態を上回り,エントロピー下界に近い性能を示す。 We consider a zero-error probabilistic group testing problem where individuals are defective independently but not with identical probabilities. We propose a greedy set formation method to build sets of individuals to be tested together. We develop an adaptive group testing algorithm that uses the proposed set formation method recursively. We prove novel upper bounds on the number of tests for the proposed algorithm. Via numerical results, we show that our algorithm outperforms the state of the art, and performs close to the entropy lower bound. | 翻訳日:2023-03-17 00:51:47 公開日:2021-08-27 |
# コヒーレントワンウェイ量子鍵分布に対するゼロエラー攻撃 Foiling zero-error attacks against coherent-one-way quantum key distribution ( http://arxiv.org/abs/2108.12393v1 ) ライセンス: Link先を確認 | Marcos Curty | (参考訳) 実際の量子鍵分布(QKD)を光子数分割攻撃から保護するために、受信した信号のコヒーレンスを測定することができた。
このアプローチに従う顕著な例として、コヒーレントワンウェイ(COW)QKDがある。
しかし、驚くべきことに、その秘密鍵レートがチャネル透過率と二乗的にスケールしていることが最近実証されており、長距離伝送には不向きである。
この結果はゼロエラー攻撃(zero-error attack)によって導出され、エラーを発生させることなくセキュアな鍵の配布を防止する。
本稿では,COW-QKDに対するゼロエラー攻撃に対する様々な対策について検討する。
追加で利用可能な検出統計を監視したり、放出される量子状態の数を増やす必要がある。
本研究では,チャネル透過率に近づいた秘密鍵レートの漸近的上層セキュリティ境界を求め,このプロトコルの性能向上のための対策の有効性を示唆する。 To protect practical quantum key distribution (QKD) against photon-number-splitting attacks, one could measure the coherence of the received signals. One prominent example that follows this approach is coherent-one-way (COW) QKD, which is commercially available. Surprisingly, however, it has been shown very recently that its secret key rate scales quadratically with the channel transmittance, and, thus, this scheme is unsuitable for long-distance transmission. This result was derived by using a zero-error attack, which prevents the distribution of a secure key without introducing any error. Here, we study various countermeasures to foil zero-error attacks against COW-QKD. They require to either monitor some additional available detection statistics, or to increase the number of quantum states emitted. We obtain asymptotic upper security bounds on the secret key rate that scale close to linear with the channel transmittance, thus suggesting the effectiveness of the countermeasures to boost the performance of this protocol. | 翻訳日:2023-03-17 00:51:21 公開日:2021-08-27 |
# Webスケールエンティティ抽出システム A Web Scale Entity Extraction System ( http://arxiv.org/abs/2110.00423v1 ) ライセンス: Link先を確認 | Xuanting Cai, Quanbin Ma, Pan Li, Jianyu Liu, Qi Zeng, Zhengkan Yang, Pushkar Tripathi | (参考訳) 実体や概念のレンズを通してウェブ上のコンテンツの意味を理解することは、多くの実用的な利点がある。
しかし、大規模なエンティティ抽出システムを構築する場合、実践者はインターネットプラットフォームで利用可能なスケールとさまざまなデータを活用する最善の方法を見つけるという、ユニークな課題に直面している。
マルチモーダル変換器を用いて,複数の文書タイプを大規模に抽出するエンティティ抽出システムの構築について,我々の取り組みから学ぶ。
我々は,多言語,マルチタスク,クロスドキュメント型学習の有効性を実証的に実証した。
また,収集したデータのノイズ量を最小限に抑えるためのラベル収集手法についても論じる。 Understanding the semantic meaning of content on the web through the lens of entities and concepts has many practical advantages. However, when building large-scale entity extraction systems, practitioners are facing unique challenges involving finding the best ways to leverage the scale and variety of data available on internet platforms. We present learnings from our efforts in building an entity extraction system for multiple document types at large scale using multi-modal Transformers. We empirically demonstrate the effectiveness of multi-lingual, multi-task and cross-document type learning. We also discuss the label collection schemes that help to minimize the amount of noise in the collected data. | 翻訳日:2023-03-17 00:45:06 公開日:2021-08-27 |
# dirac first class 対 second class としての制約付きシステムの量子化:おもちゃモデルとその意義 Quantization of constrained systems as Dirac first class versus second class: a toy model and its implications ( http://arxiv.org/abs/2108.13210v1 ) ライセンス: Link先を確認 | Eyo Eyo Ita III, Chopin Soo, Abraham Tan | (参考訳) おもちゃモデル(クラウダーが提案する)は、第一級と第二級ディラック制約系の観点から分析される。
この比較は、適切な補助条件を導入することによって、第1クラスを第2クラスシステムに変換することによって行われる。
ディラックの制約系,ファドデエフ-ポポフ標準汎関数積分法,および益川-中島法と位相空間の減少の関係を明示する。
このモデルは、一級と二級のルート間の著しいコントラストと物理的に区別可能な結果を示す。
相対論的点粒子や電気力学のような物理的に関連する系は、短時間で再定義される。
教育的価値の他に、この論文は量子化の前に第一級を第二級システムにレンダリングする道も提唱している。
第二級系は、よく定義された位相空間と物理的可観測性、量子制約代数の閉包における不整合の欠如、量子可換子に対する基本的なディラック括弧の一貫した促進をもたらす。
第一級の体系はよく定義された第二級の体系に変換できるので、二級の手続きを経ずに通勤者にポアソンを単純に促進することで第一級の制約付きシステムの「dirac quantization」の健全性に寄与する。 A toy model (suggested by Klauder) is analyzed from the perspective of First Class and Second Class Dirac constrained systems. The comparison is made by turning a First Class into a Second Class system with the introduction of suitable auxiliary conditions. The links between Dirac's system of constraints, the Faddeev-Popov canonical functional integral method and the Maskawa-Nakajima procedure to reduced phase space are explicitly illustrated. The model reveals stark contrasts and physically distinguishable results between First and Second class routes. Physically relevant systems such as the relativistic point particle and electrodynamics are briefly recapped. Besides its pedagogical value, the article also advocates the route of rendering First Class into Second Class systems prior to quantization. Second Class systems lead to well-defined reduced phase space and physical observables; absence of inconsistencies in the closure of quantum constraint algebra; and consistent promotion of fundamental Dirac brackets to quantum commutators. As First Class systems can be turned into well-defined Second Class ones, this has implications for the soundness of "Dirac quantization" of First Class constrained systems by simple promotion of Poisson, rather than Dirac brackets, to commutators without proceeding through Second Class procedures. | 翻訳日:2023-03-17 00:44:24 公開日:2021-08-27 |
# 2モード共役光ビームの光子サブトラクションの理論 Theory of Photon Subtraction for Two-Mode Entangled Light Beams ( http://arxiv.org/abs/2108.12528v1 ) ライセンス: Link先を確認 | Oscar Rosas-Ortiz and Kevin Zelaya | (参考訳) 光子減算は、フォトニック量子技術における応用に対応する非古典的な光状態を生成するのに有用である。
非常に高速な開発の後、この技術は1つの光子または光猫をオンデマンドで得ることができる。
しかし、生成した分野の正確な予測を可能にする理論的な定式化が欠けている。
2モードのSU(2)$コヒーレント状態によって生成される表現に基づいて、他のモードにおける光子の検出に条件づけられた1つのモードにおける光子の減光につながる絡み合った光のモデルを導入する。
光子減算は古典体から非古典体を生成しないことを示す。
また、任意の入力状態に対して条件付き確率の計算が簡単である出力フィールドのコンパクトな式も導出する。
例えば、圧搾された真空状態と奇抜なスクイーズ状態の分析がある。
また,光猫をビームスプリッターに注入すると,ベル表現の絡み合い状態が生じることを示した。 Photon subtraction is useful to produce nonclassical states of light addressed to applications in photonic quantum technologies. After a very accelerated development, this technique makes possible obtaining either single photons or optical cats on demand. However, it lacks theoretical formulation enabling precise predictions for the produced fields. Based on the representation generated by the two-mode $SU(2)$ coherent states, we introduce a model of entangled light beams leading to the subtraction of photons in one of the modes, conditioned to the detection of any photon in the other mode. We show that photon subtraction does not produce nonclassical fields from classical fields. It is also derived a compact expression for the output field from which the calculation of conditional probabilities is straightforward for any input state. Examples include the analysis of squeezed-vacuum and odd-squeezed states. We also show that injecting optical cats into a beam splitter gives rise to entangled states in the Bell representation. | 翻訳日:2023-03-17 00:44:00 公開日:2021-08-27 |
# 平衡ゲイン・ロス光導波路:Susy-QMにおける誘導モードの厳密解 Balanced Gain-and-Loss Optical Waveguides: Exact Solutions for Guided Modes in Susy-QM ( http://arxiv.org/abs/2108.12523v1 ) ライセンス: Link先を確認 | Sara Cruz y Cruz, Alejandro Romero-Osnaya and Oscar Rosas-Ortiz | (参考訳) 光導波路におけるTEモードを誘導する正確な可溶性屈折率をダルブックス・クルム変換の定式化の中で検討した。
高次超対称量子力学に有限差分アルゴリズムを適用し、その点スペクトルに全実固有値を持つ複素値屈折率を求める。
新しい屈折率指標は、その虚部が定義領域全体にわたって統合されたときにゼロを与えるようなものである。
この性質は総面積ゼロの条件と呼ばれ、光学パワーの保存を保証し、屈折率はバランスのとれた利得と損失を示す。
その結果、この研究で報告された複素数値屈折率指数は、パリティ時間不変の場合に限定されない。 The construction of exactly solvable refractive indices allowing guided TE modes in optical waveguides is investigated within the formalism of Darboux-Crum transformations. We apply the finite-difference algorithm for higher-order supersymmetric quantum mechanics to obtain complex-valued refractive indices admitting all-real eigenvalues in their point spectrum. The new refractive indices are such that their imaginary part gives zero if it is integrated over the entire domain of definition. This property, called condition of zero total area, ensures the conservation of optical power so the refractive index shows balanced gain and loss. Consequently, the complex-valued refractive indices reported in this work include but are not limited to the parity-time invariant case. | 翻訳日:2023-03-17 00:43:44 公開日:2021-08-27 |
# 量子コンピュータにおける測定誤差のスケーラブル緩和 Scalable mitigation of measurement errors on quantum computers ( http://arxiv.org/abs/2108.12518v1 ) ライセンス: Link先を確認 | Paul D. Nation, Hwajung Kang, Neereja Sundaresan, Jay M. Gambetta | (参考訳) 本稿では,全割当行列やその逆行列を形成しない量子コンピューティングプラットフォームの計測誤差を軽減し,ノイズ入力ビット列によって定義される部分空間で動作する手法を提案する。
この手法は, 相関誤差と相関誤差の両方に対応し, 正確な誤差境界の計算を可能にする。
さらに,行列フリーの事前条件付き反復解法について詳述する。これは$\mathcal{o}(1)$ ステップに収束する。
提案手法の有効性を実証し,それ以外は難解なキュービット数に対して数秒で誤差を緩和する。 We present a method for mitigating measurement errors on quantum computing platforms that does not form the full assignment matrix, or its inverse, and works in a subspace defined by the noisy input bit-strings. This method accommodates both uncorrelated and correlated errors, and allows for computing accurate error bounds. Additionally, we detail a matrix-free preconditioned iterative solution method that converges in $\mathcal{O}(1)$ steps that is performant and uses orders of magnitude less memory than direct factorization. We demonstrate the validity of our method, and mitigate errors in a few seconds on numbers of qubits that would otherwise be intractable. | 翻訳日:2023-03-17 00:43:32 公開日:2021-08-27 |
# 量子ドット分子の最大出力における太陽電池効率 Photovoltaic efficiency at maximum power of a quantum dot molecule ( http://arxiv.org/abs/2108.12501v1 ) ライセンス: Link先を確認 | J. Lira, L. Sanz, and A. M. Alcalde | (参考訳) 本研究では, 量子ドット分子の最大出力における効率の挙動を調査し, 光電変換装置として機能する。
エネルギーオフセットと量子障壁の幅の影響を考慮したマスター方程式を用いた理論的アプローチは、フォトセルの光応答を高める現実的な物理的条件を特定する。
その結果、単一量子ドットと比較して分子当たりの最大電力の30\%で利得を増加させる可能性が示された。
また、このシステムはカルノットの効率を超えることなく最大出力でのシャンバダル・ノヴィコフの効率と比較して、熱力学の第2法則から予想される上昇を示す。 In this work, it is investigated the behavior of the efficiency at maximum power of a quantum dot molecule, acting as a device for photovoltaic conversion. A theoretical approach using a master equation, considering the effect of the energy offsets, and the width of the quantum barrier, identifies realistic physical conditions that enhance the photovoltaic response of the photocell. The results show the potentiality of increasing the gain in 30\% of maximum power delivered per molecule if compared with a single quantum dot. Also, the system exhibits gain when compared to the Chambadal-Novikov efficiency at maximum power, without exceeding Carnot's efficiency, as expected from the second law of thermodynamics. | 翻訳日:2023-03-17 00:43:22 公開日:2021-08-27 |
# パラメータ化量子状態 Parameterizing Qudit States ( http://arxiv.org/abs/2108.12499v1 ) ライセンス: Link先を確認 | Arsen Khvedelidze, Dimitar Mladenov and Astghik Torosyan | (参考訳) 常に有限個の状態を持つ量子系は、核物理学や素粒子物理学、凝縮物質物理学において多くの物理モデルの主要な要素となっている。
しかし、今日では、量子技術開発分野の実用的な需要により、有限次元量子システムの構造理解を改善するための一連の新しいタスクが登場している。
本稿では、$N$レベルの量子系の状態空間の明示的パラメータ化問題に関連する研究の1つの側面に焦点を当てる。
より正確には、ユニタリ軌道空間 $\mathfrak{p}_n$、すなわちユニタリ軌道空間 $\mathfrak{p}_n/su(n)$ のユニタリ値空間$n$レベル状態空間の実際的な説明の問題について議論する。
多項式不変量理論のよく知られた方法と凸幾何学の組み合わせは、$\mathfrak{P}_N/SU(N)$の要素に対して有用なパラメータ化を提供する。
一般的な状況を説明するために、低レベルシステムに対する$\mathfrak{P}_N/SU(N)$の詳細な記述が与えられる: qubit $(N=2)\,,$ qutrit $(N=3)\,$ quatrit $(N=4)\,$-。 Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area of developing quantum technologies, a whole set of novel tasks for improving our understanding of the structure of finite-dimensional quantum systems has appeared. In the present article we will concentrate on one aspect of such studies related to the problem of explicit parameterization of state space of an $N$-level quantum system. More precisely, we will discuss the problem of a practical description of the unitary $SU(N)$-invariant counterpart of the $N$-level state space $\mathfrak{P}_N$, i.e., the unitary orbit space $\mathfrak{P}_N/SU(N)$. It will be demonstrated that the combination of well-known methods of the polynomial invariant theory and convex geometry provides useful parameterization for the elements of $\mathfrak{P}_N/SU(N)$. To illustrate the general situation, a detailed description of $\mathfrak{P}_N/SU(N)$ for low-level systems: qubit $(N=2)\,,$ qutrit $(N=3)\,,$ quatrit $(N=4)\,$ - will be given. | 翻訳日:2023-03-17 00:43:09 公開日:2021-08-27 |
# 高次MaxCutのための明示的ベクトルアルゴリズム An explicit vector algorithm for high-girth MaxCut ( http://arxiv.org/abs/2108.12477v1 ) ライセンス: Link先を確認 | Jessica K. Thompson, Ojas Parekh, Kunal Marwaha | (参考訳) 我々はmaxcutの近似アルゴリズムを提供し、$d$-regular graphs of girth $\geq 2k$ でカットされた辺の平均分数を保証する。
すべての$d \geq 3$と$k \geq 4$に対して、我々の近似保証は他の古典的および量子的アルゴリズムよりも優れている。
提案アルゴリズムは,MaxCut の半定次緩和に対する明示的なベクトル解を構築し,超平面丸めを適用した。
これは、無限の $d$-正則木上のガウス波過程を近似する、最もよく知られた手法の単純化と見なすことができる。 We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $\geq 2k$. For every $d \geq 3$ and $k \geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree. | 翻訳日:2023-03-17 00:42:32 公開日:2021-08-27 |
# 社会科学におけるソフトウェア利用の調査 : 知識グラフによるアプローチ Investigating Software Usage in the Social Sciences: A Knowledge Graph Approach ( http://arxiv.org/abs/2003.10715v2 ) ライセンス: Link先を確認 | David Schindler, Benjamin Zapilko, Frank Kr\"uger | (参考訳) 科学的調査で使用されるソフトウェアに関する知識は、結果の証明、属性開発者へのソフトウェア影響の測定、書誌的ソフトウェア引用分析など、さまざまな理由から必要である。
さらに、ソフトウェアとソースコードの入手方法に関する情報を提供することで、科学全般におけるオープンソースソフトウェアの現状と役割についての評価が可能になる。
このような分析は手動で行うことができるが、大規模な分析には自動的な情報抽出とリンクの方法が必要となる。
本稿では,社会科学の51,000以上の学術論文から,ソフトウェア言及に関する情報を含む知識グラフであるSoftwareKGを紹介する。
遠隔かつ弱い監視アプローチによって作成された銀の標準コーパスと、手動アノテーションによって作成された金の標準コーパスを使用して、lstmベースのニューラルネットワークを訓練し、科学論文のソフトウェア言及を識別した。
このモデルは正確な一致で.82Fスコアの認識率を達成する。
その結果、133,000以上のソフトウェア言及が特定できた。
エンティティの曖昧さには、パブリックドメイン知識ベースDBpediaを使用しました。
さらに、知識グラフのエンティティを、microsoft academic knowledge graph、software ontology、wikidataといった他の知識ベースに関連付けました。
最後に、社会科学におけるソフトウェアの役割を評価するためにSoftwareKGをどのように利用できるかを説明する。 Knowledge about the software used in scientific investigations is necessary for different reasons, including provenance of the results, measuring software impact to attribute developers, and bibliometric software citation analysis in general. Additionally, providing information about whether and how the software and the source code are available allows an assessment about the state and role of open source software in science in general. While such analyses can be done manually, large scale analyses require the application of automated methods of information extraction and linking. In this paper, we present SoftwareKG - a knowledge graph that contains information about software mentions from more than 51,000 scientific articles from the social sciences. A silver standard corpus, created by a distant and weak supervision approach, and a gold standard corpus, created by manual annotation, were used to train an LSTM based neural network to identify software mentions in scientific articles. The model achieves a recognition rate of .82 F-score in exact matches. As a result, we identified more than 133,000 software mentions. For entity disambiguation, we used the public domain knowledge base DBpedia. Furthermore, we linked the entities of the knowledge graph to other knowledge bases such as the Microsoft Academic Knowledge Graph, the Software Ontology, and Wikidata. Finally, we illustrate, how SoftwareKG can be used to assess the role of software in the social sciences. | 翻訳日:2022-12-20 09:26:34 公開日:2021-08-27 |
# マージンベース損失を伴う計量学習におけるクラスコラプス防止の再考 Rethinking preventing class-collapsing in metric learning with margin-based losses ( http://arxiv.org/abs/2006.05162v2 ) ライセンス: Link先を確認 | Elad Levi, Tete Xiao, Xiaolong Wang, Trevor Darrell | (参考訳) メトリック学習は、視覚的に類似したインスタンスが近接し、異なるインスタンスが分離する知覚的埋め込みを求めるが、クラス内サンプルの分布が多様で異なるサブクラスタが存在する場合、学習された表現は最適となる。
理論的には最適仮定と一致するが、三重項損失やマージン損失のようなマージンベース損失は様々な解群を持つ。
理論的には、合理的な雑音仮定の下では、マージンに基づく損失は、様々なモードを持つクラスのすべてのサンプルを埋め込み空間の単一点に投影する傾向にあり、その結果、クラス崩壊は通常、分類や検索に不適な空間を生じさせる。
この問題に対処するため,各サンプルが最寄りの同一クラスをタプルの正の要素としてバッチで選択するように,組込み損失の簡易な修正を提案する。
これにより、各クラス内に複数のサブクラスタが存在することができる。
この適応は、幅広いメトリック学習損失に統合することができる。
提案手法は, 各種画像検索データセットにおいて, 類似した視覚パターンのサンプルが組込み空間に近接していることが定性的検索結果から明らかである。 Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learned representations can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. Although theoretically with optimal assumptions, margin-based losses such as the triplet loss and margin loss have a diverse family of solutions. We theoretically prove and empirically show that under reasonable noise assumptions, margin-based losses tend to project all samples of a class with various modes onto a single point in the embedding space, resulting in a class collapse that usually renders the space ill-sorted for classification or retrieval. To address this problem, we propose a simple modification to the embedding losses such that each sample selects its nearest same-class counterpart in a batch as the positive element in the tuple. This allows for the presence of multiple sub-clusters within each class. The adaptation can be integrated into a wide range of metric learning losses. The proposed sampling method demonstrates clear benefits on various fine-grained image retrieval datasets over a variety of existing losses; qualitative retrieval results show that samples with similar visual patterns are indeed closer in the embedding space. | 翻訳日:2022-11-23 13:52:31 公開日:2021-08-27 |
# メモリリフレッシュ損失を伴う分散連想メモリネットワーク Distributed Associative Memory Network with Memory Refreshing Loss ( http://arxiv.org/abs/2007.10637v3 ) ライセンス: Link先を確認 | Taewon Park, Inchul Choi, Minho Lee | (参考訳) 近年のメモリ拡張ニューラルネットワーク(MANN)研究の進展にもかかわらず、単一の外部メモリを持つ連想メモリネットワークは、複雑なリレーショナル推論タスクにおいて限られた性能を示す。
特に、コンテンツベースのアドレス可能なメモリネットワークは、リレーショナル推論のための十分な表現に入力データをエンコードしないことが多いため、長い時間的シーケンスデータに対するMANNの関係モデリング性能は制限される。
そこで本研究では,MANNの関係推論性能を高めるために,メモリリフレッシュロス(MRL)を用いた分散連想メモリアーキテクチャ(DAM)を提案する。
人間の脳の動作にインスパイアされた我々のフレームワークは、複数のメモリブロックにまたがる分散表現でデータをエンコードし、脳のリハーサルプロセスと同様の記憶力を高めるために、コンテンツを繰り返し更新する。
この処理では、複数のより小さな連想メモリブロックに1つの外部メモリを置換し、入力データの分散表現に対して、これらのサブメモリブロックを同時にかつ独立的に更新する。
さらに,データに存在する関係情報を学習しながら,タスクの目標目標を支援するMRLを提案する。
MRLは、記憶されたメモリコンテンツから確率的にサンプリングされた入力データを再生することにより、MANNが入力データとタスク目標との関連性を強化することができる。
この手順により、MANNは格納された表現をさらに強化する。
実験では,記憶処理と関係推論の両方において最先端のパフォーマンスを実現する,代表的なコンテンツベースアドレッシングメモリモデルの一つであるディファレンシャル・ニューラル・コンピュータ(dnc)に本手法を適用した。 Despite recent progress in memory augmented neural network (MANN) research, associative memory networks with a single external memory still show limited performance on complex relational reasoning tasks. Especially the content-based addressable memory networks often fail to encode input data into rich enough representation for relational reasoning and this limits the relation modeling performance of MANN for long temporal sequence data. To address these problems, here we introduce a novel Distributed Associative Memory architecture (DAM) with Memory Refreshing Loss (MRL) which enhances the relation reasoning performance of MANN. Inspired by how the human brain works, our framework encodes data with distributed representation across multiple memory blocks and repeatedly refreshes the contents for enhanced memorization similar to the rehearsal process of the brain. For this procedure, we replace a single external memory with a set of multiple smaller associative memory blocks and update these sub-memory blocks simultaneously and independently for the distributed representation of input data. Moreover, we propose MRL which assists a task's target objective while learning relational information existing in data. MRL enables MANN to reinforce an association between input data and task objective by reproducing stochastically sampled input data from stored memory contents. With this procedure, MANN further enriches the stored representations with relational information. In experiments, we apply our approaches to Differential Neural Computer (DNC), which is one of the representative content-based addressing memory models and achieves the state-of-the-art performance on both memorization and relational reasoning tasks. | 翻訳日:2022-11-08 03:55:53 公開日:2021-08-27 |
# テキストWebスーパービジョンによる映像表現の学習 Learning Video Representations from Textual Web Supervision ( http://arxiv.org/abs/2007.14937v2 ) ライセンス: Link先を確認 | Jonathan C. Stroud, Zhichao Lu, Chen Sun, Jia Deng, Rahul Sukthankar, Cordelia Schmid, David A. Ross | (参考訳) インターネット上のビデオは、タイトルや説明などのテキストと組み合わせられている。
このテキストは典型的には、シーン内のオブジェクトや実行中のアクションなど、ビデオの中で最も重要な内容を記述する。
そこで本研究では,映像表現の学習方法としてテキストの利用を提案する。
これを実現するために,データ収集プロセスを提案し,インターネット上で公開されている7千万のビデオクリップを収集し,各動画と関連するテキストをペアリングするモデルを訓練する。
本研究では,Kinetics,HMDB-51,UCF-101などのダウンストリーム動作認識タスクにおけるモデルの評価を行った。
提案手法は,映像表現の事前学習に有効な方法であることがわかった。
具体的には、既存のすべての自己教師付きおよびクロスモーダルビデオ表現学習方法よりも優れています。 Videos on the Internet are paired with pieces of text, such as titles and descriptions. This text typically describes the most important content in the video, such as the objects in the scene and the actions being performed. Based on this observation, we propose to use text as a method for learning video representations. To accomplish this, we propose a data collection process and use it to collect 70M video clips shared publicly on the Internet, and we then train a model to pair each video with its associated text. We evaluate the model on several down-stream action recognition tasks, including Kinetics, HMDB-51, and UCF-101. We find that this approach is an effective method of pre-training video representations. Specifically, it outperforms all existing methods for self-supervised and cross-modal video representation learning. | 翻訳日:2022-11-05 20:37:39 公開日:2021-08-27 |
# スマートトランスポートアプリケーションのリアルタイムニアクラッシュ検出のためのエッジコンピューティング Edge Computing for Real-Time Near-Crash Detection for Smart Transportation Applications ( http://arxiv.org/abs/2008.00549v3 ) ライセンス: Link先を確認 | Ruimin Ke, Zhiyong Cui, Yanlong Chen, Meixin Zhu, Hao Yang, Yinhai Wang | (参考訳) 交通事故に近いイベントは、交通安全研究のための安全対策や自動車両テストのためのコーナーケースデータなど、さまざまなスマートトランスポートアプリケーションにとって重要なデータソースとなる。
しかし、ニアクラッシュ検出にはいくつかの重要な課題がある。
まず、元のデータソースからクレーシェに近いものを抽出するには、重要なコンピューティング、通信、ストレージリソースが必要です。
また、既存の手法は効率と転送性に欠けており、将来の大規模応用をボトルネックにしている。
そこで本稿では,既存のダッシュカムの映像ストリームをリアルタイムに処理することで,エッジコンピューティングのパワーを活用して,これらの課題に対処する。
エッジデバイスで動作するマルチスレッドシステムアーキテクチャを設計し,オブジェクトの検出と追跡によって生成される境界ボックスを線形複雑度でモデル化する。
この方法はカメラパラメータに無感であり、異なる車両と後方互換性がある。
エッジコンピューティングシステムは、2台の車と4台のバスで1万時間以上にわたって記録されたビデオと実世界のテストで評価されている。
それは無関係なビデオをリアルタイムでフィルターし、コスト、処理時間、ネットワーク帯域、データストレージを節約する。
イベントビデオだけでなく、道路利用者の種類、イベント位置、衝突までの時間、車両軌道、車両速度、ブレーキスイッチ、スロットルなどの貴重なデータも収集する。
実験では, 効率, 精度, 信頼性, 伝達性に関するシステムの性能を実証した。
リアルタイムトラヒックビデオ分析にエッジコンピューティングを適用する最初の取り組みのひとつであり、スマートトランスポーテーション研究やアプリケーションにおいて、複数のサブフィールドにメリットが期待されている。 Traffic near-crash events serve as critical data sources for various smart transportation applications, such as being surrogate safety measures for traffic safety research and corner case data for automated vehicle testing. However, there are several key challenges for near-crash detection. First, extracting near-crashes from original data sources requires significant computing, communication, and storage resources. Also, existing methods lack efficiency and transferability, which bottlenecks prospective large-scale applications. To this end, this paper leverages the power of edge computing to address these challenges by processing the video streams from existing dashcams onboard in a real-time manner. We design a multi-thread system architecture that operates on edge devices and model the bounding boxes generated by object detection and tracking in linear complexity. The method is insensitive to camera parameters and backward compatible with different vehicles. The edge computing system has been evaluated with recorded videos and real-world tests on two cars and four buses for over ten thousand hours. It filters out irrelevant videos in real-time thereby saving labor cost, processing time, network bandwidth, and data storage. It collects not only event videos but also other valuable data such as road user type, event location, time to collision, vehicle trajectory, vehicle speed, brake switch, and throttle. The experiments demonstrate the promising performance of the system regarding efficiency, accuracy, reliability, and transferability. It is among the first efforts in applying edge computing for real-time traffic video analytics and is expected to benefit multiple sub-fields in smart transportation research and applications. | 翻訳日:2022-11-03 20:02:43 公開日:2021-08-27 |
# 制約付きユーティリティ最大化のためのディープラーニング Deep Learning for Constrained Utility Maximisation ( http://arxiv.org/abs/2008.11757v2 ) ライセンス: Link先を確認 | Ashley Davey, Harry Zheng | (参考訳) 本稿では,汎用最大化問題に着目し,ディープラーニングを用いた確率的制御問題を解く2つのアルゴリズムを提案する。
最初のアルゴリズムはハミルトン・ヤコビ・ベルマン(HJB)方程式によってマルコフ問題を解く。
この高非線形偏微分方程式 (PDE) を2次後方確率微分方程式 (2BSDE) の定式化で解く。
問題の凸構造は、元の原始的アプローチを検証するか、複雑性の一部を回避できる双対問題を記述することができる。
第二のアルゴリズムは、既存の文献における確率的制御解法の範囲を超えた非マルコフ問題の解法として双対性法の全力を利用する。
双対最適条件を満たす随伴 BSDE を解く。
我々はこれらのアルゴリズムを,ブラック・スコールズ,ヘストン確率ボラティリティ,経路依存ボラティリティモデルにおけるパワー,ログ,非RAユーティリティの問題に適用する。
数値実験により,計算コストの低い高精度な計算結果が得られた。 This paper proposes two algorithms for solving stochastic control problems with deep learning, with a focus on the utility maximisation problem. The first algorithm solves Markovian problems via the Hamilton Jacobi Bellman (HJB) equation. We solve this highly nonlinear partial differential equation (PDE) with a second order backward stochastic differential equation (2BSDE) formulation. The convex structure of the problem allows us to describe a dual problem that can either verify the original primal approach or bypass some of the complexity. The second algorithm utilises the full power of the duality method to solve non-Markovian problems, which are often beyond the scope of stochastic control solvers in the existing literature. We solve an adjoint BSDE that satisfies the dual optimality conditions. We apply these algorithms to problems with power, log and non-HARA utilities in the Black-Scholes, the Heston stochastic volatility, and path dependent volatility models. Numerical experiments show highly accurate results with low computational cost, supporting our proposed algorithms. | 翻訳日:2022-10-24 22:31:49 公開日:2021-08-27 |
# 確率勾配によるサンプリングバイアスの補正におけるリサンプリング性能の向上 Why resampling outperforms reweighting for correcting sampling bias with stochastic gradients ( http://arxiv.org/abs/2009.13447v3 ) ライセンス: Link先を確認 | Jing An, Lexing Ying, Yuhua Zhu | (参考訳) ある集団からサンプリングされたデータセットは、その集団の下位群が基礎となる比率と著しく異なる比率でサンプリングされた場合に偏りがある。
バイアスデータセット上で機械学習モデルをトレーニングするには、バイアスを補うための補正テクニックが必要である。
目的関数を維持するために,各部分群の比率を再バランスさせる手法として,再サンプリングと重み付けの2つを検討した。
統計的に同値であるが、確率的勾配アルゴリズムと組み合わせた場合、オーバーフォームの再サンプリングは再重み付けをもたらすことが観察されている。
この現象の背景にある理由は, 動的安定性と確率的漸近論のツールを用いて説明できる。
また, 回帰, 分類, オフ・ポリシー予測の実験を行い, これが一般的な現象であることを示す。
対象関数設計と最適化アルゴリズムを同時に考慮し,サンプリングバイアスに対処することが不可欠である。 A data set sampled from a certain population is biased if the subgroups of the population are sampled at proportions that are significantly different from their underlying proportions. Training machine learning models on biased data sets requires correction techniques to compensate for the bias. We consider two commonly-used techniques, resampling and reweighting, that rebalance the proportions of the subgroups to maintain the desired objective function. Though statistically equivalent, it has been observed that resampling outperforms reweighting when combined with stochastic gradient algorithms. By analyzing illustrative examples, we explain the reason behind this phenomenon using tools from dynamical stability and stochastic asymptotics. We also present experiments from regression, classification, and off-policy prediction to demonstrate that this is a general phenomenon. We argue that it is imperative to consider the objective function design and the optimization algorithm together while addressing the sampling bias. | 翻訳日:2022-10-13 21:30:44 公開日:2021-08-27 |
# 両レベル最適化:収束解析と拡張設計 Bilevel Optimization: Convergence Analysis and Enhanced Design ( http://arxiv.org/abs/2010.07962v3 ) ライセンス: Link先を確認 | Kaiyi Ji, Junjie Yang and Yingbin Liang | (参考訳) バイレベル最適化は、メタ学習、ハイパーパラメータ最適化、強化学習など、多くの機械学習問題の強力なツールとして生まれました。
本稿では,非凸強凸二レベル最適化問題について検討する。
決定論的二段階最適化のために,近似暗黙的微分 (aid) と反復的微分 (itd) に基づく2つの一般的なアルゴリズムの包括的収束率解析を行う。
AIDに基づく手法では、より実用的なパラメータ選択と温かいスタート戦略により、事前収束率分析を順番に改善し、ITDベースの手法では、最初の理論的収束率を確立する。
分析はまた、ITDとAIDに基づくアプローチの定量的比較も提供する。
確率的二段階最適化のために,効率的なジャコビアンおよびヘシアンベクトル積計算を用いた標本効率の高い過勾配推定器を特徴とする,StocBiOというアルゴリズムを提案する。
stocbio の収束率保証を提供し,条件数 $\kappa$ と目標精度 $\epsilon$ に対して,stocbio が最もよく知られた計算複雑性を順に上回っていることを示す。
さらに, メタラーニングおよびハイパーパラメータ最適化実験により, 理論結果を検証し, バイレベル最適化アルゴリズムの効率を示す。 Bilevel optimization has arisen as a powerful tool for many machine learning problems such as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper, we investigate the nonconvex-strongly-convex bilevel optimization problem. For deterministic bilevel optimization, we provide a comprehensive convergence rate analysis for two popular algorithms respectively based on approximate implicit differentiation (AID) and iterative differentiation (ITD). For the AID-based method, we orderwisely improve the previous convergence rate analysis due to a more practical parameter selection as well as a warm start strategy, and for the ITD-based method we establish the first theoretical convergence rate. Our analysis also provides a quantitative comparison between ITD and AID based approaches. For stochastic bilevel optimization, we propose a novel algorithm named stocBiO, which features a sample-efficient hypergradient estimator using efficient Jacobian- and Hessian-vector product computations. We provide the convergence rate guarantee for stocBiO, and show that stocBiO outperforms the best known computational complexities orderwisely with respect to the condition number $\kappa$ and the target accuracy $\epsilon$. We further validate our theoretical results and demonstrate the efficiency of bilevel optimization algorithms by the experiments on meta-learning and hyperparameter optimization. | 翻訳日:2022-10-07 03:44:03 公開日:2021-08-27 |
# トピックガイドによる抽象テキスト要約:共同学習アプローチ Topic-Guided Abstractive Text Summarization: a Joint Learning Approach ( http://arxiv.org/abs/2010.10323v2 ) ライセンス: Link先を確認 | Chujie Zheng, Kunpeng Zhang, Harry Jiannan Wang, Ling Fan, Zhe Wang | (参考訳) 本稿では,抽象テキスト要約のための新しいアプローチ,トピックガイドによる抽象要約を提案する。
ニューラルネットワークをTransformerベースのシーケンス・ツー・シーケンス(seq2seq)モデルに結合学習フレームワークに組み込むことが目的だ。
この設計は、文書のグローバルな意味を学習し、保存し、文書の重要なアイデアを捉えるための追加の文脈的ガイダンスを提供することにより、要約の生成を促進できる。
2つのデータセットについて広範な実験を行い,提案モデルがルージュ計測と人間評価の両面で抽出・抽象化システムを上回ることを示した。
私たちのコードは以下の通りです。 We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization, which calibrates long-range dependencies from topic-level features with globally salient content. The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework. This design can learn and preserve the global semantics of the document, which can provide additional contextual guidance for capturing important ideas of the document, thereby enhancing the generation of summary. We conduct extensive experiments on two datasets and the results show that our proposed model outperforms many extractive and abstractive systems in terms of both ROUGE measurements and human evaluation. Our code is available at: https://github.com/chz816/tas. | 翻訳日:2022-10-05 06:54:40 公開日:2021-08-27 |
# 非リプシッツマトリクス濃度による振幅流の緩やかな沈み込みの最適試料複雑度 Optimal Sample Complexity of Subgradient Descent for Amplitude Flow via Non-Lipschitz Matrix Concentration ( http://arxiv.org/abs/2011.00288v2 ) ライセンス: Link先を確認 | Paul Hand, Oscar Leong, Vladislav Voroninski | (参考訳) 位相のない実数値の$n$次元信号を線形測定し、振幅に基づく非滑らかな最小二乗の目的を解析する問題を考察する。
目的の勾配ダイナミクスから生じる不連続な行列値演算子の均一な濃度に基づいて,最適サンプル複雑性を持つ部分次数降下の局所収束を確立する。
ランダム関数の均一濃度を確立するための一般的な手法はリプシッツ連続性を利用するが、不連続行列値作用素は、測定ベクトルが高確率で$m = \Omega(n)$ のとき、一様行列濃度の不等式を満たすことを証明する。
次に、この不等式を満足することは、大域的な符号曖昧性まで真の解に線形収束する適切な初期化を持つ劣次降に対して十分であることを示す。
その結果、最適なサンプル複雑性でガウス測定の局所収束が保証される。
本研究における集中法は, 従来, 生成的ニューラルネットワーク前処理下での様々な逆問題に対する回復保証を確立するために用いられてきた。
本稿では,これらの手法をより伝統的な逆問題に適用する可能性を示し,それらの結果を教育的に紹介する。 We consider the problem of recovering a real-valued $n$-dimensional signal from $m$ phaseless, linear measurements and analyze the amplitude-based non-smooth least squares objective. We establish local convergence of subgradient descent with optimal sample complexity based on the uniform concentration of a random, discontinuous matrix-valued operator arising from the objective's gradient dynamics. While common techniques to establish uniform concentration of random functions exploit Lipschitz continuity, we prove that the discontinuous matrix-valued operator satisfies a uniform matrix concentration inequality when the measurement vectors are Gaussian as soon as $m = \Omega(n)$ with high probability. We then show that satisfaction of this inequality is sufficient for subgradient descent with proper initialization to converge linearly to the true solution up to the global sign ambiguity. As a consequence, this guarantees local convergence for Gaussian measurements at optimal sample complexity. The concentration methods in the present work have previously been used to establish recovery guarantees for a variety of inverse problems under generative neural network priors. This paper demonstrates the applicability of these techniques to more traditional inverse problems and serves as a pedagogical introduction to those results. | 翻訳日:2022-10-01 05:20:02 公開日:2021-08-27 |
# エッジ上でのセンサデータの匿名化 - 表現学習とトランスフォーメーションアプローチ Anonymizing Sensor Data on the Edge: A Representation Learning and Transformation Approach ( http://arxiv.org/abs/2011.08315v3 ) ライセンス: Link先を確認 | Omid Hajihassani, Omid Ardakanian, Hamzeh Khazaei | (参考訳) モノのインターネット(IoT)デバイスにセンサーが収集するデータの豊富さと、時系列データに隠されたパターンを明らかにするディープニューラルネットワークの成功により、プライバシー上の懸念が高まっている。
これは、プライベートでセンシティブな情報は、このデータにアクセスするアプリケーションによってセンサーデータから学べる可能性があるためである。
本稿では,データの難読化に有用な低次元表現を学習することで,有用性とプライバシー損失のトレードオフを検討することを目的とする。
本稿では,変分オートエンコーダの潜時空間における決定論的および確率的変換を提案する。
決定論的な場合、線形変換を用いて、遅延空間における入力データの表現を、再構成されたデータが元の入力データと異なるパブリック属性を持つ可能性が高いように移動させる。
確率論の場合には、線形変換を何らかの確率で入力データの潜在表現に適用する。
本手法をオートエンコーダによる匿名化技術と比較し,リソース制約エッジデバイス上でリアルタイムにデータを匿名化できることを示す。 The abundance of data collected by sensors in Internet of Things (IoT) devices, and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this paper, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices. | 翻訳日:2022-09-24 23:58:38 公開日:2021-08-27 |
# 次数補正混合会員モデルにおける正規化スペクトルクラスタリングの整合性 Consistency of regularized spectral clustering in degree-corrected mixed membership model ( http://arxiv.org/abs/2011.12239v2 ) ライセンス: Link先を確認 | Huan Qing and Jingli Wang | (参考訳) 近年,ネットワーク分析におけるコミュニティ検出が注目されている。
ここでは、次数補正混合メンバシップ(dcmm)モデルに基づいて、正則ラプラシアン行列に基づく混合正規化スペクトルクラスタリング(略してmixed-rsc)と呼ばれる効率的なアプローチを提案する。
混合RSCは、人口正規化ラプラシア行列の固有分解のための変種の理想的な錐構造に基づいて設計されている。
提案アルゴリズムは,各ノードの推定メンバシップベクトルに対する誤差境界を提供することにより,温和な条件下で漸近的に整合性を示す。
境界の副産物として、正規化パラメータ {\tau} に対する理論的最適選択を与える。
提案手法の性能を示すために,シミュレーションおよび実世界のネットワーク上で,従来のベンチマーク手法を適用した。
我々の知る限り、これは正規化ラプラシア行列の適用に基づくDCMMモデルの下で混合会員コミュニティ検出問題に対するスペクトルクラスタリングアルゴリズムを設計する最初の試みである。 Community detection in network analysis is an attractive research area recently. Here, under the degree-corrected mixed membership (DCMM) model, we propose an efficient approach called mixed regularized spectral clustering (Mixed-RSC for short) based on the regularized Laplacian matrix. Mixed-RSC is designed based on an ideal cone structure of the variant for the eigen-decomposition of the population regularized Laplacian matrix. We show that the algorithm is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vector of each node. As a byproduct of our bound, we provide the theoretical optimal choice for the regularization parameter {\tau}. To demonstrate the performance of our method, we apply it with previous benchmark methods on both simulated and real-world networks. To our knowledge, this is the first work to design spectral clustering algorithm for mixed membership community detection problem under DCMM model based on the application of regularized Laplacian matrix. | 翻訳日:2022-09-22 01:54:56 公開日:2021-08-27 |
# ディエンス予測のためのチャネル知識蒸留 Channel-wise Knowledge Distillation for Dense Prediction ( http://arxiv.org/abs/2011.13256v4 ) ライセンス: Link先を確認 | Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, Chunhua Shen | (参考訳) 知識蒸留(KD)は、コンパクトモデルを訓練するためのシンプルで効果的なツールであることが証明されている。
密接な予測タスクのためのほとんどすべてのKD変種は、通常、ポイントワイドおよび/またはペアワイドの差を最小化することによって、学生と教師ネットワークの空間領域における特徴写像を整列させる。
意味的セグメンテーションにおいて,各チャネルのレイヤの特徴活性化は,シーンカテゴリの塩分をエンコードする傾向(クラスアクティベーションマッピングを例に)から,生徒と教師ネットワークのチャネルごとに特徴を整合させることが提案されている。
この目的のために、まず、各チャネルの特徴マップをsoftmax正規化を用いて確率マップに変換し、それから2つのネットワークの対応するチャネルのkullback-leibler(kl)分岐を最小化する。
そこで本手法は,ネットワーク間のチャネルのソフトな分布を模倣することに焦点を当てた。
特に、KLの発散は、おそらくセマンティックセグメンテーションにおいて最も有用な信号に対応するチャネルワイドマップの最も健全な領域に、学習がより注意を払うことを可能にする。
実験により, チャネルワイド蒸留は, セマンティックセグメンテーションにおいて, 既存の空間蒸留法よりもかなり優れており, 訓練の際の計算コストの低減を図っている。
様々なネットワーク構造を持つ3つのベンチマークにおいて、一貫して優れた性能を達成する。
コードは: https://git.io/distiller Knowledge distillation (KD) has been proven to be a simple and effective tool for training compact models. Almost all KD variants for dense prediction tasks align the student and teacher networks' feature maps in the spatial domain, typically by minimizing point-wise and/or pair-wise discrepancy. Observing that in semantic segmentation, some layers' feature activations of each channel tend to encode saliency of scene categories (analogue to class activation mapping), we propose to align features channel-wise between the student and teacher networks. To this end, we first transform the feature map of each channel into a probabilty map using softmax normalization, and then minimize the Kullback-Leibler (KL) divergence of the corresponding channels of the two networks. By doing so, our method focuses on mimicking the soft distributions of channels between networks. In particular, the KL divergence enables learning to pay more attention to the most salient regions of the channel-wise maps, presumably corresponding to the most useful signals for semantic segmentation. Experiments demonstrate that our channel-wise distillation outperforms almost all existing spatial distillation methods for semantic segmentation considerably, and requires less computational cost during training. We consistently achieve superior performance on three benchmarks with various network structures. Code is available at: https://git.io/Distiller | 翻訳日:2022-09-20 09:05:52 公開日:2021-08-27 |
# 深層行列因子分解のための勾配降下--低位へのダイナミクスと暗黙のバイアス Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank ( http://arxiv.org/abs/2011.13772v4 ) ライセンス: Link先を確認 | Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, Holger Rauhut | (参考訳) ディープラーニングでは、トレーニングポイントよりも多くのネットワークパラメータを使用するのが一般的である。
このような過パラメータ化のシナリオでは、訓練アルゴリズムが計算した解に暗黙のバイアスを引き起こすように、トレーニングエラーをゼロにする複数のネットワークが存在する。
実際には、(統計的に)グラデーションドルミネッセンスは、よく一般化した解を好む傾向にあり、深層学習の成功を説明できる。
本稿では,線形ネットワークの簡易化における勾配降下のダイナミクスと推定問題について解析する。
我々は過度にパラメータ化されたscenarioにはいないが、それでも我々の分析は暗黙のバイアス現象に関する洞察を与えてくれる。
実際、バニラ勾配降下のダイナミクスの厳密な解析を行い、スペクトルの動的収束を特徴付ける。
我々は,イテレートの有効ランクが接地行列の低ランク射影の有効ランクに近い時間間隔を正確に特定することができる。
実際には、一定の規則性が要求される場合は、これらの間隔を早期停止の基準として使用できる。
また、行列センシングやランダム初期化など、より一般的なシナリオにおける暗黙バイアスの実証的証拠も提供する。
このことは、深層学習が複雑度(有効ランクの測度)が単調に増加する軌跡を好むことを示唆しており、これは深層学習の理論的理解の基本的な概念であると考えている。 In deep learning, it is common to use more network parameters than training points. In such scenarioof over-parameterization, there are usually multiple networks that achieve zero training error so that thetraining algorithm induces an implicit bias on the computed solution. In practice, (stochastic) gradientdescent tends to prefer solutions which generalize well, which provides a possible explanation of thesuccess of deep learning. In this paper we analyze the dynamics of gradient descent in the simplifiedsetting of linear networks and of an estimation problem. Although we are not in an overparameterizedscenario, our analysis nevertheless provides insights into the phenomenon of implicit bias. In fact, wederive a rigorous analysis of the dynamics of vanilla gradient descent, and characterize the dynamicalconvergence of the spectrum. We are able to accurately locate time intervals where the effective rankof the iterates is close to the effective rank of a low-rank projection of the ground-truth matrix. Inpractice, those intervals can be used as criteria for early stopping if a certain regularity is desired. Wealso provide empirical evidence for implicit bias in more general scenarios, such as matrix sensing andrandom initialization. This suggests that deep learning prefers trajectories whose complexity (measuredin terms of effective rank) is monotonically increasing, which we believe is a fundamental concept for thetheoretical understanding of deep learning. | 翻訳日:2022-09-20 02:47:40 公開日:2021-08-27 |
# (参考訳) 知覚内符号切り換えのためのリトレーニングフリー音声認識の検討 Exploring Retraining-Free Speech Recognition for Intra-sentential Code-Switching ( http://arxiv.org/abs/2109.00921v1 ) ライセンス: CC BY 4.0 | Zhen Huang, Xiaodan Zhuang, Daben Liu, Xiaoqiang Xiao, Yuchen Zhang, Sabato Marco Siniscalchi | (参考訳) 本稿では,既存の音響モデル (AM) と言語モデル (LM) を利用したコードスイッチング (CS) 音声認識システムの構築に向けた最初の取り組みについて述べる。
このような野心的な目標を達成するために、外国語発音生成と言語モデル(LM)強化のための新たなメカニズムが考案された。
具体的には,既存の音声デコーダとLSTMに基づくG2Pモデルを用いて,母国語(NL)音素集合における外国語(FL)単語の高品質な発音を得るための自動的アプローチを設計した。
アクセント付き発音は、データから直接外国語を学習することで得られる。
さらに、元のNL LMを翻訳語対を用いてCS LMに変換し、NL LMの統計を借りることで、コードスイッチングLMをデプロイした。
実験結果から,人間のラベリングに基づく手法よりもアクセント付き外国語の発音の扱いが優れていることが明らかとなった。
さらに,従来の単言語ASRシステムで得られた単語誤り率の55.5%を,単言語認識精度を損なうことなく,文内CSタスクで15.3%に削減した。 In this paper, we present our initial efforts for building a code-switching (CS) speech recognition system leveraging existing acoustic models (AMs) and language models (LMs), i.e., no training required, and specifically targeting intra-sentential switching. To achieve such an ambitious goal, new mechanisms for foreign pronunciation generation and language model (LM) enrichment have been devised. Specifically, we have designed an automatic approach to obtain high quality pronunciation of foreign language (FL) words in the native language (NL) phoneme set using existing acoustic phone decoders and an LSTM-based grapheme-to-phoneme (G2P) model. Improved accented pronunciations have thus been obtained by learning foreign pronunciations directly from data. Furthermore, a code-switching LM was deployed by converting the original NL LM into a CS LM using translated word pairs and borrowing statistics for the NL LM. Experimental evidence clearly demonstrates that our approach better deals with accented foreign pronunciations than techniques based on human labeling. Moreover, our best system achieves a 55.5% relative word error rate reduction from 34.4%, obtained with a conventional monolingual ASR system, to 15.3% on an intra-sentential CS task without harming the monolingual recognition accuracy. | 翻訳日:2021-09-05 09:15:45 公開日:2021-08-27 |
# (参考訳) 科学ピアレビューのためのオークションと予測市場 Auctions and Prediction Markets for Scientific Peer Review ( http://arxiv.org/abs/2109.00923v1 ) ライセンス: CC BY 4.0 | Siddarth Srinivasan, Jamie Morgenstern | (参考訳) 査読された出版物は、研究コミュニティが価値あると考えるアイデアを認定し、広める際の金の基準と考えられている。
しかし,本システムの主な欠点は,(1)大量の提出によるレビュアーの圧倒的需要,(2)レビュアーが参加するインセンティブの欠如,および質の高いレビューを提供するために必要な努力の欠如である。
本研究では,ピアレビュープロセスの改善を提案する機構設計手法を採用する。
本稿では,論文提出とレビュープロセスを結び付け,高品質なレビューと高品質な提出を同時にインセンティブする2段階のメカニズムを提案する。
最初の段階では、著者がレビュースロットのVCGオークションに参加し、論文を提出し、論文をレビューする際の期待値を示す入札を行う。
第2段階として,情報化文学における近年の研究を基盤とした新しい予測市場型メカニズム(h-dipp)を提案する。
第1段階のオークションで得た収入は、第2段階のレビューの質に応じてレビュワーに支払われる。 Peer reviewed publications are considered the gold standard in certifying and disseminating ideas that a research community considers valuable. However, we identify two major drawbacks of the current system: (1) the overwhelming demand for reviewers due to a large volume of submissions, and (2) the lack of incentives for reviewers to participate and expend the necessary effort to provide high-quality reviews. In this work, we adopt a mechanism-design approach to propose improvements to the peer review process. We present a two-stage mechanism which ties together the paper submission and review process, simultaneously incentivizing high-quality reviews and high-quality submissions. In the first stage, authors participate in a VCG auction for review slots by submitting their papers along with a bid that represents their expected value for having their paper reviewed. For the second stage, we propose a novel prediction market-style mechanism (H-DIPP) building on recent work in the information elicitation literature, which incentivizes participating reviewers to provide honest and effortful reviews. The revenue raised by the Stage I auction is used in Stage II to pay reviewers based on the quality of their reviews. | 翻訳日:2021-09-05 09:02:58 公開日:2021-08-27 |
# 形状による生物・人工物の分類 Classifying Organisms and Artefacts By Their Shapes ( http://arxiv.org/abs/2109.00920v1 ) ライセンス: Link先を確認 | Arianna Salili-James, Anne Mackay, Emilio Rodriguez-Alvarez, Diana Rodriguez-Perez, Thomas Mannack, Timothy A. Rawlings, A. Richard Palmer, Jonathan Todd, Terhi E. Riutta, Cate Macinnis-Ng, Zhitong Han, Megan Davies, Zinnia Thorpe, Stephen Marsland, and Armand M. Leroi | (参考訳) 私たちはしばしば、オブジェクトを形によって分類したいと考えています。
実際、形状の研究は進化生物学、構造生物学、画像処理、考古学など多くの科学分野の重要な部分である。
最も広く使われている形状解析法である幾何形態計測は、形状が表現される数学的空間が線型であることを仮定する。
しかし、形状空間が実際はもっと複雑で、確実に非線形であることは、長い間知られていた。
この非線型性を考慮に入れ、形間の距離をより正確に推定する微分同型法は存在するが、実世界の問題にはほとんど適用されていない。
機械分類器を用いて, 様々な有機物や人工物の形状を記述・分類する手法について検討した。
その結果,正方形速度関数 (SRVF) は標準的な幾何形状法 (eigenshapes) など,他の手法よりも優れていることがわかった。
また、計算形状分類器は人間の専門家より優れており、SRVF間の最短経路は進化系列の中間ステップの形状を推定するためにも利用できることを示した。
本研究は, 自然科学と人間科学における多くの形状記述・分類問題に対する, 実用的で効果的な解法を提供するものである。 We often wish to classify objects by their shapes. Indeed, the study of shapes is an important part of many scientific fields such as evolutionary biology, structural biology, image processing, and archaeology. The most widely-used method of shape analysis, Geometric Morphometrics, assumes that that the mathematical space in which shapes are represented is linear. However, it has long been known that shape space is, in fact, rather more complicated, and certainly non-linear. Diffeomorphic methods that take this non-linearity into account, and so give more accurate estimates of the distances among shapes, exist but have rarely been applied to real-world problems. Using a machine classifier, we tested the ability of several of these methods to describe and classify the shapes of a variety of organic and man-made objects. We find that one method, the Square-Root Velocity Function (SRVF), is superior to all others, including a standard Geometric Morphometric method (eigenshapes). We also show that computational shape classifiers outperform human experts, and that the SRVF shortest-path between shapes can be used to estimate the shapes of intermediate steps in evolutionary series. Diffeomorphic shape analysis methods, we conclude, now provide practical and effective solutions to many shape description and classification problems in the natural and human sciences. | 翻訳日:2021-09-05 08:55:01 公開日:2021-08-27 |
# (参考訳) 畳み込みニューラルネットワークによるフィールド再構成 A Convolutional Neural Network-based Approach to Field Reconstruction ( http://arxiv.org/abs/2108.13517v1 ) ライセンス: CC BY 4.0 | Roberto Ponciroli and Andrea Rovinelli and Lander Ibarra | (参考訳) この作品はieeeに提出され、出版される可能性がある。
著作権は通知なしで転送され、その後、このバージョンはアクセスできなくなる。
多くの応用において、領域の空間分布はスパイク、不連続、危険な異質性を検出するために注意深く監視される必要があるが、侵襲的監視アプローチは使用できない。
さらに、システムの正確なモデルの採用を防止することで、プロセスに関する技術的な仕様は利用できないかもしれない。
本研究では,これらの要求に対処可能な物理インフォームドデータ駆動アルゴリズムを提案する。
この手法は畳み込みニューラルネットワークにおける境界要素法(BEM)スキームの実装に基づいている。
連続的な数学的関数をパラメータの少ない数で表現する能力により、ネットワークは境界条件と領域内の測定値の少ない領域の任意の点におけるフィールド値を予測することができる。
ヘルムホルツ方程式が3次元領域上で記述した場を再構成するために,提案手法を適用した。
また,異なる物理的条件と異なるネットワーク構成を調査して感度解析を行った。
唯一の仮定はbemの適用性であるため、現在のアプローチは、水貯水池内の汚染物質源の局在から原子炉内の中性子フラックスの監視まで、幅広いプロセスの監視に適用することができる。 This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. In many applications, the spatial distribution of a field needs to be carefully monitored to detect spikes, discontinuities or dangerous heterogeneities, but invasive monitoring approaches cannot be used. Besides, technical specifications about the process might not be available by preventing the adoption of an accurate model of the system. In this work, a physics-informed, data-driven algorithm that allows addressing these requirements is presented. The approach is based on the implementation of a boundary element method (BEM)-scheme within a convolutional neural network. Thanks to the capability of representing any continuous mathematical function with a reduced number of parameters, the network allows predicting the field value in any point of the domain, given the boundary conditions and few measurements within the domain. The proposed approach was applied to reconstruct a field described by the Helmholtz equation over a three-dimensional domain. A sensitivity analysis was also performed by investigating different physical conditions and different network configurations. Since the only assumption is the applicability of BEM, the current approach can be applied to the monitoring of a wide range of processes, from the localization of the source of pollutant within a water reservoir to the monitoring of the neutron flux in a nuclear reactor. | 翻訳日:2021-09-02 07:54:39 公開日:2021-08-27 |
# (参考訳) Covid-19パンデミックに対する予防接種キャンペーンの効果のモデル化 Modeling the effect of the vaccination campaign on the Covid-19 pandemic ( http://arxiv.org/abs/2108.13908v1 ) ライセンス: CC BY 4.0 | Mattia Angeli, Georgios Neofotistos, Marios Mattheakis and Efthimios Kaxiras | (参考訳) 集団予防接種は、SARS-CoV-2(Covid-19)パンデミックと制限および予防措置の併用に重要である。
本研究では,予防接種キャンペーン中にコビッドウイルスの流行を予測できる数学的モデルであるSAIVRを紹介する。
SAIVRは、無症状 (A) とワクチン (V) のコンパートメントを考慮し、広く使われている感受性感染除去 (SIR) モデルを拡張している。
このモデルは、半教師付き機械学習手法を用いて推定されるいくつかのパラメータと初期条件を含む。
教師なしニューラルネットワークをトレーニングしてSAIVR微分方程式を解いた後、教師付きフレームワークは27か国の感染曲線に最も適合する最適な条件とパラメータを推定する。
これらの結果から, 日中感染率, ワクチン有効性, および, 広範囲の社会的ワクチン依存度, デンタルレベルにおいて, パンデミックの経時的変化について広範な研究を行った。
群れ免疫の概念は、異なるワクチン接種とより感染性の高いコビッドウイルスの変異を含む将来のシナリオを研究することで疑問視されている。 Population-wide vaccination is critical for containing the SARS-CoV-2 (Covid-19) pandemic when combined with restrictive and prevention measures. In this study, we introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign. SAIVR extends the widely used Susceptible-Infectious-Removed (SIR) model by considering the Asymptomatic (A) and Vaccinated (V) compartments. The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure. After training an unsupervised neural network to solve the SAIVR differential equations, a supervised framework then estimates the optimal conditions and parameters that best fit recent infectious curves of 27 countries. Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels. The concept of herd immunity is questioned by studying future scenarios which involve different vaccination efforts and more infectious Covid-19 variants. | 翻訳日:2021-09-02 07:42:38 公開日:2021-08-27 |
# DoWhy: 因果推定の表現と検証における課題 DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions ( http://arxiv.org/abs/2108.13518v1 ) ライセンス: Link先を確認 | Amit Sharma, Vasilis Syrgkanis, Cheng Zhang, Emre K{\i}c{\i}man | (参考訳) 因果効果の推定には、効果の方向性、機器変数や仲介者の存在、そしてすべての関連する共同設立者が観察されるかどうかといった、データ生成プロセスに関する重要な仮定が含まれる。
これらの仮定の違反は、効果推定において重大な誤差をもたらす。
しかし、予測モデルに対するクロスバリデーションとは異なり、因果推定のためのグローバルバリデータ法は存在しない。
その結果、異なる因果的仮定を形式的に表現し、それらを(可能な限り)検証することは、あらゆる分析に不可欠となる。
因果グラフを通じて仮定を明示的に宣言し、これらの仮定のサブセットをチェックするために複数の検証テストを提供するフレームワークであるdowhyを提案する。
仮定を表現するための因果グラフ以外の新しい方法の開発、グラフの関連部分の学習における因果発見の役割、平均的および条件的治療効果の両方においてエラーをよりよく検出できる検証テストの開発です。
dowhyはhttps://github.com/microsoft/dowhyで入手できる。 Estimation of causal effects involves crucial assumptions about the data-generating process, such as directionality of effect, presence of instrumental variables or mediators, and whether all relevant confounders are observed. Violation of any of these assumptions leads to significant error in the effect estimate. However, unlike cross-validation for predictive models, there is no global validator method for a causal estimate. As a result, expressing different causal assumptions formally and validating them (to the extent possible) becomes critical for any analysis. We present DoWhy, a framework that allows explicit declaration of assumptions through a causal graph and provides multiple validation tests to check a subset of these assumptions. Our experience with DoWhy highlights a number of open questions for future research: developing new ways beyond causal graphs to express assumptions, the role of causal discovery in learning relevant parts of the graph, and developing validation tests that can better detect errors, both for average and conditional treatment effects. DoWhy is available at https://github.com/microsoft/dowhy. | 翻訳日:2021-09-01 14:37:10 公開日:2021-08-27 |
# (参考訳) 瞬時・持続的時間現象の表現と処理 Representation and Processing of Instantaneous and Durative Temporal Phenomena ( http://arxiv.org/abs/2108.13365v1 ) ライセンス: CC BY 4.0 | Manolis Pitsikalis, Alexei Lisitsa and Shan Luo | (参考訳) 複合イベント処理システムにおけるイベント定義は、各システムの言語表現性によって制約される。
一部のシステムでは瞬時に複雑なイベントを定義できるが、他のシステムでは耐久性のある複合イベントを定義できる。
両方の選択肢を提供する例外はあるが、しばしばアレンの区間代数によって指定されるような区間関係が欠落する。
本稿では,複雑な事象処理を念頭に置いて,瞬時現象と耐久性現象の表現とそれらの時間関係を両立させる,新しい論理に基づく時相現象定義言語を提案する。
さらに,海事事件を規定する海事利用事例を用いて,提案言語の表現性を実証する。
最後に,ストリーム処理のための提案言語の実行セマンティクスを分析し,'phenesthe'実装プロトタイプを紹介する。 Event definitions in Complex Event Processing systems are constrained by the expressiveness of each system's language. Some systems allow the definition of instantaneous complex events, while others allow the definition of durative complex events. While there are exceptions that offer both options, they often lack of intervals relations such as those specified by the Allen's interval algebra. In this paper, we propose a new logic based temporal phenomena definition language, specifically tailored for Complex Event Processing, that allows the representation of both instantaneous and durative phenomena and the temporal relations between them. Moreover, we demonstrate the expressiveness of our proposed language by employing a maritime use case where we define maritime events of interest. Finally, we analyse the execution semantics of our proposed language for stream processing and introduce the `Phenesthe' implementation prototype. | 翻訳日:2021-09-01 12:24:23 公開日:2021-08-27 |
# (参考訳) 低次モデリングのための畳み込みオートエンコーダ Convolutional Autoencoders for Reduced-Order Modeling ( http://arxiv.org/abs/2108.12453v1 ) ライセンス: CC BY 4.0 | Sreeram Venkat, Ralph C. Smith, Carl T. Kelley | (参考訳) 力学系の還元次モデルの構築では、適切な直交分解のような線形射影法が一般的に用いられる。
しかし、多くの力学系に対して、状態空間の低次元表現は、最も正確には \textit{nonlinear} 多様体で記述できる。
従来の研究では、ディープラーニングはトレーニングデータの可用性に依存しており、しばしば問題固有の \citep[see][]{carlberg_ca} であるにもかかわらず、非線形次元の削減を効率的に行うことができることが示されている。
本稿では、ランダム化学習データを用いて、波動および倉本-シヴァシンスキー方程式の非線形次元還元を行う畳み込みオートエンコーダを作成し、訓練する。
さらに,全次モデルサンプルとは独立な学習法を示し,多様体最小二乗ペトロフ・ガレルキン射影法を用いて,同じオートエンコーダを用いた熱,波,倉本-シヴァシンスキー方程式の還元次モデルを定義する。 In the construction of reduced-order models for dynamical systems, linear projection methods, such as proper orthogonal decompositions, are commonly employed. However, for many dynamical systems, the lower dimensional representation of the state space can most accurately be described by a \textit{nonlinear} manifold. Previous research has shown that deep learning can provide an efficient method for performing nonlinear dimension reduction, though they are dependent on the availability of training data and are often problem-specific \citep[see][]{carlberg_ca}. Here, we utilize randomized training data to create and train convolutional autoencoders that perform nonlinear dimension reduction for the wave and Kuramoto-Shivasinsky equations. Moreover, we present training methods that are independent of full-order model samples and use the manifold least-squares Petrov-Galerkin projection method to define a reduced-order model for the heat, wave, and Kuramoto-Shivasinsky equations using the same autoencoder. | 翻訳日:2021-09-01 11:27:48 公開日:2021-08-27 |
# (参考訳) Pivots から Graphs: 一般化としてのAugmented CycleDensity から One Time InverseConsultation へ From Pivots to Graphs: Augmented CycleDensity as a Generalization to One Time InverseConsultation ( http://arxiv.org/abs/2108.12459v1 ) ライセンス: CC BY 4.0 | Shashwat Goel and Kunwar Shaanjeet Singh Grover | (参考訳) 本稿では,第4タスク推論辞書(TIAD 2021)共有タスクの一部として,生のバイリンガル辞書を用いて新しい翻訳を生成する手法について述べる。
本稿では,感覚情報や並列コーパスを必要としない技術手法の2つの状態,すなわちサイクル密度(CD)とOne Time Inverse Consultation(OTIC)の知見を組み合わせたフレームワークとして,ACD(Augmented Cycle Density)を提案する。
タスク結果は、ACDの予測である3つの未確認言語ペアのうち、OTICのカバレッジがほぼ同じ精度(76%)で2倍以上(74%)であることを示している。
ACDは、より優れた予測のためにリッチな多言語グラフを平均化するCDのスケーラビリティと、OTICのデータ効率を組み合わせる。 This paper describes an approach used to generate new translations using raw bilingual dictionaries as part of the 4th Task Inference Across Dictionaries (TIAD 2021) shared task. We propose Augmented Cycle Density (ACD) as a framework that combines insights from two state of the art methods that require no sense information and parallel corpora: Cycle Density (CD) and One Time Inverse Consultation (OTIC). The task results show that across 3 unseen language pairs, ACD's predictions, has more than double (74%) the coverage of OTIC at almost the same precision (76%). ACD combines CD's scalability - leveraging rich multilingual graphs for better predictions, and OTIC's data efficiency - producing good results with the minimum possible resource of one pivot language. | 翻訳日:2021-09-01 11:14:57 公開日:2021-08-27 |
# (参考訳) ニューラルネットワークの近似ベイズ最適化 Approximate Bayesian Optimisation for Neural Networks ( http://arxiv.org/abs/2108.12461v1 ) ライセンス: CC BY 4.0 | Nadhir Hassen, Irina Rish | (参考訳) モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
最適な予測モデルとそのパラメータを選択するプロセスを自動化すれば、現実世界の幅広いアプリケーションを改善することができる。
ベイズ最適化 (bayesian optimization, bo) はブラックボックス最適化手法を用いて、獲得関数による探索・探索トレードオフ基準に従って解を提案する。
BOフレームワークは2つの重要な要素を課している: 未知の目的関数(データ依存)の事前の信念からなる確率的サロゲートモデルと、モデルに適した最適性を記述する目的関数である。
最良のモデルとその関連するハイパーパラメータを選択することは、非常に高価であり、典型的にはガウス過程(gps)と、その難解性から近似推論を適用する拡張を用いて適合する。
しかし,GPは観測回数とともに3次スケールするので,多くの評価を必要とする最適化対象の処理は困難である。
加えて、ほとんどの実データセットは、サロゲートモデル上で理想主義的な仮定をする非定常である。
統計的手法による解析的トラクタビリティと計算可能性の解決の必要性により、ベイズ最適化の効率性と適用性を確保することができる。
本稿では,関数上の分布をモデル化するためのGPの代替としてニューラルネットワークを用いることを検討するとともに,近似推論に基づく密度比推定とクラス確率推定のリンクを提供し,アルゴリズムの効率とトラクタビリティを提供する。 A body of work has been done to automate machine learning algorithm to highlight the importance of model choice. Automating the process of choosing the best forecasting model and its corresponding parameters can result to improve a wide range of real-world applications. Bayesian optimisation (BO) uses a blackbox optimisation methods to propose solutions according to an exploration-exploitation trade-off criterion through acquisition functions. BO framework imposes two key ingredients: a probabilistic surrogate model that consist of prior belief of the unknown objective function(data-dependant) and an objective function that describes how optimal is the model-fit. Choosing the best model and its associated hyperparameters can be very expensive, and is typically fit using Gaussian processes (GPs) and at some extends applying approximate inference due its intractability. However, since GPs scale cubically with the number of observations, it has been challenging to handle objectives whose optimization requires many evaluations. In addition, most real-dataset are non-stationary which make idealistic assumptions on surrogate models. The necessity to solve the analytical tractability and the computational feasibility in a stochastic fashion enables to ensure the efficiency and the applicability of Bayesian optimisation. In this paper we explore the use of neural networks as an alternative to GPs to model distributions over functions, we provide a link between density-ratio estimation and class probability estimation based on approximate inference, this reformulation provides algorithm efficiency and tractability. | 翻訳日:2021-09-01 11:08:06 公開日:2021-08-27 |
# (参考訳) グラフニューラルネットワークを用いてディープニューラルネットワークの性能をモデル化する Using Graph Neural Networks to model the performance of Deep Neural Networks ( http://arxiv.org/abs/2108.12489v1 ) ライセンス: CC BY 4.0 | Shikhar Singh, Benoit Steiner, James Hegarty, Hugh Leather | (参考訳) 前例のない機械学習ソフトウェアの普及に伴い、このようなアプリケーションのために効率的なコードを生成する必要性がますます高まっている。
TVMやHalideのような最先端のディープラーニングコンパイラは、学習ベースのパフォーマンスモデルを使って、与えられたディープラーニングアルゴリズムの有効な実装の空間を探索する。
あるアプリケーションでは、モデルはハードウェア上でアプリケーションを実行することなく、実行時間のようなパフォーマンス指標を生成する。
このようなモデルは、ハードウェア上で膨大な数の候補実装(スケジュールと呼ばれる)をベンチマークする必要をなくし、コンパイルプロセスを高速化する。
既存のパフォーマンスモデルは、フィードフォワードネットワーク、リカレントネットワーク、決定ツリーアンサンブルを使用して、ニューラルネットワークの異なる実装のパフォーマンスを推定する。
グラフは、各ノードが計算段階または演算を表すディープラーニングネットワークをモデル化する自然で直感的な方法を示す。
これらのワークロードの固有のグラフ構造をパフォーマンスモデルに組み込むことで、ステージ間インタラクションの表現と学習が向上する。
性能モデルの精度は、探索戦略の効率に直接影響し、このクラスのディープラーニングコンパイラの重要な構成要素となる。
本研究では,グラフ表現を用いた新しいパフォーマンスモデルを開発した。
我々のモデルでは,各段階の計算は,ステージによって実行される操作をキャプチャする特徴を特徴とするノードを表す。
ノード間の相互作用はグラフ畳み込みによって達成される。
実験評価では, ハライドモデルとtvmモデルと比較して予測誤差が7:75x, 12倍低減した。 With the unprecedented proliferation of machine learning software, there is an ever-increasing need to generate efficient code for such applications. State-of-the-art deep-learning compilers like TVM and Halide incorporate a learning-based performance model to search the space of valid implementations of a given deep learning algorithm. For a given application, the model generates a performance metric such as the run time without executing the application on hardware. Such models speed up the compilation process by obviating the need to benchmark an enormous number of candidate implementations, referred to as schedules, on hardware. Existing performance models employ feed-forward networks, recurrent networks, or decision tree ensembles to estimate the performance of different implementations of a neural network. Graphs present a natural and intuitive way to model deep-learning networks where each node represents a computational stage or operation. Incorporating the inherent graph structure of these workloads in the performance model can enable a better representation and learning of inter-stage interactions. The accuracy of a performance model has direct implications on the efficiency of the search strategy, making it a crucial component of this class of deep-learning compilers. In this work, we develop a novel performance model that adopts a graph representation. In our model, each stage of computation represents a node characterized by features that capture the operations performed by the stage. The interaction between nodes is achieved using graph convolutions. Experimental evaluation shows a 7:75x and 12x reduction in prediction error compared to the Halide and TVM models, respectively. | 翻訳日:2021-09-01 10:47:47 公開日:2021-08-27 |
# (参考訳) VisGraphNet:畳み込みニューラル特徴の複雑なネットワーク解釈 VisGraphNet: a complex network interpretation of convolutional neural features ( http://arxiv.org/abs/2108.12490v1 ) ライセンス: CC BY 4.0 | Joao B. Florindo, Young-Sup Lee, Kyungkoo Jun, Gwanggil Jeon, Marcelo K. Albertini | (参考訳) 本稿では,ニューラルネットワークの特徴マップをモデル化するための可視性グラフの利用を提案し,検討する。
複雑なネットワークの研究のために最初に考案されたこのモデルは、テクスチャ画像の分類に使用される。
この研究は、元のデータの上にこれらのグラフによって提供される別の視点によって動機づけられている。
提案手法の性能は, KTHTIPS-2b, FMD, UIUC, UMDの4つのベンチマークデータベースの分類において検証され, 葉のスキャン画像を用いて植物種の同定を行う。
本手法は他の最先端手法と競合し,テクスチャ分類におけるニューラルネットワークの利用についてより意味のある解釈を行うために,異なる文脈におけるデータ解析技術の可能性を確認した。 Here we propose and investigate the use of visibility graphs to model the feature map of a neural network. The model, initially devised for studies on complex networks, is employed here for the classification of texture images. The work is motivated by an alternative viewpoint provided by these graphs over the original data. The performance of the proposed method is verified in the classification of four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and UMD and in a practical problem, which is the identification of plant species using scanned images of their leaves. Our method was competitive with other state-of-the-art approaches, confirming the potential of techniques used for data analysis in different contexts to give more meaningful interpretation to the use of neural networks in texture classification. | 翻訳日:2021-09-01 10:30:37 公開日:2021-08-27 |
# (参考訳) 画像局所的特徴のフラクタル測度:テクスチャ認識への応用 Fractal measures of image local features: an application to texture recognition ( http://arxiv.org/abs/2108.12491v1 ) ライセンス: CC BY 4.0 | Pedro M. Silva, Joao B. Florindo | (参考訳) 本稿では,フラクタル測度(フラクタル次元,マルチフラクタルスペクトル,ラキュナリティー)と局所2値パターンを組み合わせたテクスチャ画像の分類法を提案する。
より具体的には、異なるレベルで閾値付けられたローカルバイナリコードのボックスカウント次元を計算して特徴ベクトルを構成する。
この提案は、KTHTIPS-2b、UDD、UIUCの3つのベンチマークデータベースの分類と、実世界の問題、すなわち、葉のスキャン画像を用いたブラジルの植物種(データベース1200Tex)の識別において評価されている。
提案手法は文献に報告されている他の最先端のソリューションと競合することを示した。
これらの結果から,テクスチャ分類のためのフラクタル次元が捉えたマルチスケール情報と,強力な局所符号化記述を組み合わせる可能性が示唆された。 Here we propose a new method for the classification of texture images combining fractal measures (fractal dimension, multifractal spectrum and lacunarity) with local binary patterns. More specifically we compute the box counting dimension of the local binary codes thresholded at different levels to compose the feature vector. The proposal is assessed in the classification of three benchmark databases: KTHTIPS-2b, UMD and UIUC as well as in a real-world problem, namely the identification of Brazilian plant species (database 1200Tex) using scanned images of their leaves. The proposed method demonstrated to be competitive with other state-of-the-art solutions reported in the literature. Such results confirmed the potential of combining a powerful local coding description with the multiscale information captured by the fractal dimension for texture classification. | 翻訳日:2021-09-01 10:22:21 公開日:2021-08-27 |
# (参考訳) 深層ニューラルネットワークにおける逆移動性乱れ Disrupting Adversarial Transferability in Deep Neural Networks ( http://arxiv.org/abs/2108.12492v1 ) ライセンス: CC BY 4.0 | Christopher Wiedeman, Ge Wang | (参考訳) adversarial attack transferabilityはディープラーニングにおいてよく認識される現象である。
先行研究は、共通の逆部分空間と決定境界の間の相関を認識させることで、転送可能性について部分的に説明してきたが、それ以上の文献ではほとんど説明されていない。
本稿では,異なるモデル間の転送性は,異なるディープニューラルネットワークが抽出する特徴間の高い線形相関に起因することを提案する。
言い換えれば、パラメータ空間のように見える同じタスクで訓練された2つのモデルは、潜在空間間の自明なシフトと回転とともに、同じ方法で特徴を抽出する可能性が高い。
さらに, 潜在空間で抽出された特徴の相関を解消する特徴相関損失を適用することで, モデル間の敵攻撃の伝達可能性を大幅に低減し, モデルが意味的に異なる方法でタスクを完了することを示唆する。
最後に、この特徴相関損失を利用して、2つの有意義に異なる2つの入力情報のエンコードを生成するDual Neck Autoencoder (DNA)を提案する。 Adversarial attack transferability is a well-recognized phenomenon in deep learning. Prior work has partially explained transferability by recognizing common adversarial subspaces and correlations between decision boundaries, but we have found little explanation in the literature beyond this. In this paper, we propose that transferability between seemingly different models is due to a high linear correlation between features that different deep neural networks extract. In other words, two models trained on the same task that are seemingly distant in the parameter space likely extract features in the same fashion, just with trivial shifts and rotations between the latent spaces. Furthermore, we show how applying a feature correlation loss, which decorrelates the extracted features in a latent space, can drastically reduce the transferability of adversarial attacks between models, suggesting that the models complete tasks in semantically different ways. Finally, we propose a Dual Neck Autoencoder (DNA), which leverages this feature correlation loss to create two meaningfully different encodings of input information with reduced transferability. | 翻訳日:2021-09-01 10:08:42 公開日:2021-08-27 |
# (参考訳) gaussian mixture variational autoencoderを用いたタンパク質折り畳みシミュレーションの変分埋め込み Variational embedding of protein folding simulations using gaussian mixture variational autoencoders ( http://arxiv.org/abs/2108.12493v1 ) ライセンス: CC BY 4.0 | Mahdi Ghorbani, Samarjeet Prasad, Jeffery B. Klauda, Bernard R. Brooks | (参考訳) 分子動力学シミュレーションを用いた生体分子のコンフォーマルサンプリングは、しばしば大量の高次元データを生成するため、従来の解析手法では解釈が困難である。
したがって,有用かつ関連性の高い情報を抽出するために次元化手法が必要である。
そこで我々は,生体分子配座の次元的縮小とクラスタリングを同時に行うことができる機械学習手法,ガウス混合変分オートエンコーダ(GMVAE)を考案する。
GMVAEはタンパク質の折りたたみ時の準安定状態に対応する高度に分離されたクラスターで、タンパク質の折りたたみの自由エネルギー景観の少ない表現を学習できることを示す。
GMVAEはガウスの混合物を前者に用いているため、タンパク質の折り畳み自由エネルギー景観のマルチベースの性質を直接認識することができる。
モデルをエンドツーエンドで微分可能にするために、Gumbel-softmax分布を用いる。
本モデルでは, 3つの長期的タンパク質の折りたたみ軌道上で実験を行い, GMVAEの埋め込みは, 折りたたみ状態と, 折りたたみ状態との相似性を示した。
さらに, GMVAEの潜伏空間を運動解析に利用し, この埋め込み上に構築されたマルコフ状態モデルが, 時間独立成分分析(TICA)などの厳密な動的埋め込みと密に一致した折り畳みおよび展開時間スケールを生成することを示す。 Conformational sampling of biomolecules using molecular dynamics simulations often produces large amount of high dimensional data that makes it difficult to interpret using conventional analysis techniques. Dimensionality reduction methods are thus required to extract useful and relevant information. Here we devise a machine learning method, Gaussian mixture variational autoencoder (GMVAE) that can simultaneously perform dimensionality reduction and clustering of biomolecular conformations in an unsupervised way. We show that GMVAE can learn a reduced representation of the free energy landscape of protein folding with highly separated clusters that correspond to the metastable states during folding. Since GMVAE uses a mixture of Gaussians as the prior, it can directly acknowledge the multi-basin nature of protein folding free-energy landscape. To make the model end-to-end differentialble, we use a Gumbel-softmax distribution. We test the model on three long-timescale protein folding trajectories and show that GMVAE embedding resembles the folding funnel with folded states down the funnel and unfolded states outer in the funnel path. Additionally, we show that the latent space of GMVAE can be used for kinetic analysis and Markov state models built on this embedding produce folding and unfolding timescales that are in close agreement with other rigorous dynamical embeddings such as time independent component analysis (TICA). | 翻訳日:2021-09-01 09:49:24 公開日:2021-08-27 |
# (参考訳) t2強調mriにおけるマスクr-cnnの自動腎分画 Automated Kidney Segmentation by Mask R-CNN in T2-weighted Magnetic Resonance Imaging ( http://arxiv.org/abs/2108.12506v1 ) ライセンス: CC BY 4.0 | Manu Goyal, Junyu Guo, Lauren Hinojosa, Keith Hulsey, Ivan Pedrosa | (参考訳) 医学画像におけるディープラーニングアルゴリズムの最近の進歩にもかかわらず、MRI検査における腎臓の自動セグメンテーションアルゴリズムはいまだに不足している。
核磁気共鳴画像検査(MRI)における腎臓の自動分画は、腎疾患の放射能と機械学習解析を可能にするために重要である。
本研究では,T2強調Fast Spin Ecoスライス100回のMRI検査において,腎臓の自動分節法として人気のMask R-CNNを提案する。
本研究では,Msk R-CNNの性能向上のための後処理として形態的操作を提案する。
5倍のクロスバリデーションデータを用いて、提案するマスクr-cnnを70および10回のmri検査で訓練し検証し、残りの20回の検査で評価する。
提案手法は0.904で,iouは0.822であった。 Despite the recent advances of deep learning algorithms in medical imaging, the automatic segmentation algorithms for kidneys in MRI exams are still scarce. Automated segmentation of kidneys in Magnetic Resonance Imaging (MRI) exams are important for enabling radiomics and machine learning analysis of renal disease. In this work, we propose to use the popular Mask R-CNN for the automatic segmentation of kidneys in coronal T2-weighted Fast Spin Eco slices of 100 MRI exams. We propose the morphological operations as post-processing to further improve the performance of Mask R-CNN for this task. With 5-fold cross-validation data, the proposed Mask R-CNN is trained and validated on 70 and 10 MRI exams and then evaluated on the remaining 20 exams in each fold. Our proposed method achieved a dice score of 0.904 and IoU of 0.822. | 翻訳日:2021-09-01 09:45:08 公開日:2021-08-27 |
# (参考訳) 記号:一般ゼロショット意味セグメンテーションのための空間情報組込み生成ネットワーク SIGN: Spatial-information Incorporated Generative Network for Generalized Zero-shot Semantic Segmentation ( http://arxiv.org/abs/2108.12517v1 ) ライセンス: CC BY 4.0 | Jiaxin Cheng, Soumyaroop Nandi, Prem Natarajan, Wael Abd-Almageed | (参考訳) 従来のゼロショット分類とは異なり、ゼロショットセマンティックセグメンテーションは画像レベルではなくピクセルレベルでクラスラベルを予測する。
ゼロショット意味セグメンテーション問題を解くとき、周辺文脈でのピクセルレベルの予測の必要性は、位置符号化を用いた空間情報の導入を動機付ける。
特徴レベルで空間情報を統合し、任意の画像サイズを処理できる相対的位置符号化の概念を導入することにより、標準的な位置符号化を改善する。
さらに,ゼロショットセマンティクスセグメンテーションにおいて,擬似ラベルを生成するために,セルフトレーニングが広く用いられている一方で,擬似ラベルに異なる重要性を付与し,パフォーマンスを向上させるための新しい知識蒸留誘導セルフトレーニング戦略であるアニールドセルフトレーニングを提案する。
提案した相対的位置エンコーディングとアナルド自己学習を総合的な実験評価で体系的に検討し,本手法の有効性を3つのベンチマークデータセットで検証した。 Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrounding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets. | 翻訳日:2021-09-01 09:39:54 公開日:2021-08-27 |
# (参考訳) TweetBLM:Twitter上のブラックライブ関連マイクロブログのヘイトスピーチデータセットと分析 TweetBLM: A Hate Speech Dataset and Analysis of Black Lives Matter-related Microblogs on Twitter ( http://arxiv.org/abs/2108.12521v1 ) ライセンス: CC BY 4.0 | Sumit Kumar, Raj Ratn Pranesh | (参考訳) 過去数年間、さまざまなソーシャルメディアプラットフォームで、有害で憎悪的なコンテンツが著しく増加している。
最近、Black Lives Matter(ブラックライブ・マター・ムーブメント)が登場し、インターネット上でユーザーが生成した反応の雪崩を引き起こした。
本稿では,black lives matter関連tweet hate speech dataset tweetblmを提案する。
私たちのデータセットは、Black Lives Matter運動をターゲットとする、手動で注釈付きツイート9165です。
我々は、黒人コミュニティの運動から生じた人種差別に関する内容に基づいて、ツイートを2つのクラス、すなわちヘイトとノンヘイトに注釈付けした。
本研究では、データセットに関する有用な統計情報も生成し、データセットの分類タスクに対してランダムフォレスト、CNN、LSTM、BiLSTM、Fasttext、BERTbase、BERTlargeといった機械学習モデルの体系的解析を行った。
本研究は,インターネット上でのヘイトスピーチの識別と緩和のために,研究コミュニティの多大な努力に貢献することを目的としている。
データセットは公開されている。 In the past few years, there has been a significant rise in toxic and hateful content on various social media platforms. Recently Black Lives Matter movement came into the picture, causing an avalanche of user generated responses on the internet. In this paper, we have proposed a Black Lives Matter related tweet hate speech dataset TweetBLM. Our dataset comprises 9165 manually annotated tweets that target the Black Lives Matter movement. We annotated the tweets into two classes, i.e., HATE and NONHATE based on their content related to racism erupted from the movement for the black community. In this work, we also generated useful statistical insights on our dataset and performed a systematic analysis of various machine learning models such as Random Forest, CNN, LSTM, BiLSTM, Fasttext, BERTbase, and BERTlarge for the classification task on our dataset. Through our work, we aim at contributing to the substantial efforts of the research community for the identification and mitigation of hate speech on the internet. The dataset is publicly available. | 翻訳日:2021-09-01 09:23:38 公開日:2021-08-27 |
# (参考訳) NLPにおける構造化アプリケーションのためのエネルギーベース近似ネットワークの学習 Learning Energy-Based Approximate Inference Networks for Structured Applications in NLP ( http://arxiv.org/abs/2108.12522v1 ) ライセンス: CC BY 4.0 | Lifu Tu | (参考訳) 自然言語処理(NLP)における構造化予測には長い歴史がある。
構造化されたアプリケーションの複雑なモデルは、学習と推論の難しさを伴います。
これらの困難により、研究者は単純な構造コンポーネント(例えば局所分類器)を持つモデルにもっと焦点をあてるようになる。
近年、深層表現学習が盛んに行われている。
一方、それらの手法の構造的構成要素は、通常比較的単純である。
この論文では複雑な構造モデルに焦点を当てる。
複雑な構造化モデルのための学習フレームワークと、より高速/高精度/探索誤差トレードオフを備えた推論手法を提供する。
論文はエネルギーモデルへの一般的な導入から始まる。
NLPや他の応用では、エネルギー関数はスコアリング関数の概念に匹敵する。
この論文では、エネルギー関数と異なるエネルギー関数を持つ構造モデルの概念について議論する。
そこで我々は,ニューラルネットワークを学習して,構造エネルギー関数の下でargmax推論を行う手法を提案し,トレーニングされたネットワークを"推論ネットワーク"あるいは"エネルギーベース推論ネットワーク"と呼ぶ。
次に,相反学習フレームワークを用いて,エネルギー関数と推論ネットワークを共同で学習する方法を開発する。
エネルギーベースモデルの推論と学習の難しさにもかかわらず、エネルギーベースモデルを構造化NLPアプリケーションに適用しやすくする手法を提案する。 Structured prediction in natural language processing (NLP) has a long history. The complex models of structured application come at the difficulty of learning and inference. These difficulties lead researchers to focus more on models with simple structure components (e.g., local classifier). Deep representation learning has become increasingly popular in recent years. The structure components of their method, on the other hand, are usually relatively simple. We concentrate on complex structured models in this dissertation. We provide a learning framework for complicated structured models as well as an inference method with a better speed/accuracy/search error trade-off. The dissertation begins with a general introduction to energy-based models. In NLP and other applications, an energy function is comparable to the concept of a scoring function. In this dissertation, we discuss the concept of the energy function and structured models with different energy functions. Then, we propose a method in which we train a neural network to do argmax inference under a structured energy function, referring to the trained networks as "inference networks" or "energy-based inference networks". We then develop ways of jointly learning energy functions and inference networks using an adversarial learning framework. Despite the inference and learning difficulties of energy-based models, we present approaches in this thesis that enable energy-based models more easily to be applied in structured NLP applications. | 翻訳日:2021-09-01 09:17:06 公開日:2021-08-27 |
# 商用顔検出におけるロバスト性差 Robustness Disparities in Commercial Face Detection ( http://arxiv.org/abs/2108.12508v1 ) ライセンス: Link先を確認 | Samuel Dooley and Tom Goldstein and John P. Dickerson | (参考訳) 顔認識と分析システムは大企業によって導入され、過去10年間、学者や活動家によって批判されてきた。
システムパフォーマンスに焦点を当てた批判は、システムの出力の不一致、すなわち、異なるフィッツパトリックの皮膚タイプや知覚された性別で検出される顔の頻度を分析します。
しかし, 自然摂動条件下でのこれらのシステム出力の頑健さに着目する。
私たちは、Amazon Rekognition、Microsoft Azure、Google Cloud Platformの3つのシステムの堅牢性に関する、この種の詳細なベンチマークを初めて提示します。
我々は、標準と最近リリースされた学術的な顔データセットの両方を用いて、それぞれの堅牢性の傾向を定量的に分析する。
データセットやシステム全体では、年齢、男性、肌のタイプ、薄暗い照明を持つ個人の写真は、他のアイデンティティよりもエラーの影響を受けやすいことが一般的です。 Facial detection and analysis systems have been deployed by large companies and critiqued by scholars and activists for the past decade. Critiques that focus on system performance analyze disparity of the system's output, i.e., how frequently is a face detected for different Fitzpatrick skin types or perceived genders. However, we focus on the robustness of these system outputs under noisy natural perturbations. We present the first of its kind detailed benchmark of the robustness of three such systems: Amazon Rekognition, Microsoft Azure, and Google Cloud Platform. We use both standard and recently released academic facial datasets to quantitatively analyze trends in robustness for each. Across all the datasets and systems, we generally find that photos of individuals who are older, masculine presenting, of darker skin type, or have dim lighting are more susceptible to errors than their counterparts in other identities. | 翻訳日:2021-08-31 15:04:16 公開日:2021-08-27 |
# 急性呼吸不全診断のための機械学習を用いた胸部X線と心電図データの組み合わせ Combining chest X-rays and EHR data using machine learning to diagnose acute respiratory failure ( http://arxiv.org/abs/2108.12530v1 ) ライセンス: Link先を確認 | Sarah Jabbour, David Fouhey, Ella Kazerooni, Jenna Wiens, Michael W Sjoding | (参考訳) 急性呼吸不全を患う患者は、基礎疾患を正確に同定することが最善の治療法を決定する上で不可欠であるが、臨床診療における一般的な診断を区別することは困難である。
機械学習モデルは、急性呼吸不全患者の診断評価において、臨床的意思決定を増強し、医療診断を改善することができる。
機械学習モデルは胸部X線写真(例)の一般的な発見を特定するために開発された。
電子健康記録(ehr)からの臨床関連データを分析してこれらのアプローチを強化する肺炎は、急性呼吸不全の診断に役立つ可能性がある。
急性呼吸不全(肺炎、心不全、copd)の原因を予測するために、胸部x線写真と内科的コホートにおけるehrデータを用いて、医師の診断に基づいて機械学習モデルを訓練した。
また, 退院診断符号を用いて, 外部コホート患者のモデルも検討した。
胸部X線写真とERHデータを組み合わせたモデルでは, 肺炎, COPDに対してのみ, モダリティのモデルが優れていた。
肺炎では、AUROCは0.79 (0.78-0.79)、画像モデルAUROCは0.73 (0.72-0.75)、EHRモデルAUROCは0.73 (0.70-0.76)、 COPDは0.89 (0.83-0.91)、画像は0.85 (0.77-0.89)、心不全では0.80 (0.76-0.84)、画像は0.77 (0.71-0.81)、EHRは0.80 (0.75-0.82)であった。
外部コホートでは心不全とcopdでパフォーマンスは一致したが,肺炎ではやや低下した。
全体として、胸部X線写真とHRデータを併用した機械学習モデルは、急性呼吸不全の一般的な原因を正確に区別することができる。
これらのモデルが臨床現場で急性呼吸不全の診断に役立つかどうかを判断するには、さらなる研究が必要である。 When patients develop acute respiratory failure, accurately identifying the underlying etiology is essential for determining the best treatment, but it can be challenging to differentiate between common diagnoses in clinical practice. Machine learning models could improve medical diagnosis by augmenting clinical decision making and play a role in the diagnostic evaluation of patients with acute respiratory failure. While machine learning models have been developed to identify common findings on chest radiographs (e.g. pneumonia), augmenting these approaches by also analyzing clinically relevant data from the electronic health record (EHR) could aid in the diagnosis of acute respiratory failure. Machine learning models were trained to predict the cause of acute respiratory failure (pneumonia, heart failure, and/or COPD) using chest radiographs and EHR data from patients within an internal cohort using diagnoses based on physician chart review. Models were also tested on patients in an external cohort using discharge diagnosis codes. A model combining chest radiographs and EHR data outperformed models based on each modality alone for pneumonia and COPD. For pneumonia, the combined model AUROC was 0.79 (0.78-0.79), image model AUROC was 0.73 (0.72-0.75), and EHR model AUROC was 0.73 (0.70-0.76); for COPD, combined: 0.89 (0.83-0.91), image: 0.85 (0.77-0.89), and EHR: 0.80 (0.76-0.84); for heart failure, combined: 0.80 (0.77-0.84), image: 0.77 (0.71-0.81), and EHR: 0.80 (0.75-0.82). In the external cohort, performance was consistent for heart failure and COPD, but declined slightly for pneumonia. Overall, machine learning models combing chest radiographs and EHR data can accurately differentiate between common causes of acute respiratory failure. Further work is needed to determine whether these models could aid clinicians in the diagnosis of acute respiratory failure in clinical settings. | 翻訳日:2021-08-31 15:04:01 公開日:2021-08-27 |
# 点雲上の内集団関係の学習 Learning Inner-Group Relations on Point Clouds ( http://arxiv.org/abs/2108.12468v1 ) ライセンス: Link先を確認 | Haoxi Ran, Wei Zhuo, Jun Liu, Li Lu | (参考訳) コンピュータビジョンにおける関係ネットワークの普及は、未探索の点ベース手法とは対照的である。
本稿では,局所関係演算子の可能性について検討し,その実現可能性について検討する。
グループ関係アグリゲータと呼ばれるスケーラブルで効率的なモジュールを提案する。
このモジュールは、幾何学的関係と意味的関係によって重みづけられた内集団点の特徴の集約に基づいて、群の特徴を計算する。
私たちはRPNetの設計にこのモジュールを採用しています。
さらに,分類とセグメンテーションのタスクに基づいて,深さと幅の両面でRPNetの拡張性を検証する。
驚くべきことに、実験的な結果は、より広いRPNetが分類に適合することを示している。
RPNetは、挑戦的なベンチマークで分類とセグメンテーションの最先端を達成する。
また、ローカルアグリゲータをpointnet++と比較し、約30%のパラメータと50%の計算節約を実現しました。
最後に,剛性変換と雑音に関してrpnetのロバスト性を明らかにする実験を行った。 The prevalence of relation networks in computer vision is in stark contrast to underexplored point-based methods. In this paper, we explore the possibilities of local relation operators and survey their feasibility. We propose a scalable and efficient module, called group relation aggregator. The module computes a feature of a group based on the aggregation of the features of the inner-group points weighted by geometric relations and semantic relations. We adopt this module to design our RPNet. We further verify the expandability of RPNet, in terms of both depth and width, on the tasks of classification and segmentation. Surprisingly, empirical results show that wider RPNet fits for classification, while deeper RPNet works better on segmentation. RPNet achieves state-of-the-art for classification and segmentation on challenging benchmarks. We also compare our local aggregator with PointNet++, with around 30% parameters and 50% computation saving. Finally, we conduct experiments to reveal the robustness of RPNet with regard to rigid transformation and noises. | 翻訳日:2021-08-31 15:03:01 公開日:2021-08-27 |
# Wasserstein Barycenters レンズによるテキストの自動評価 Automatic Text Evaluation through the Lens of Wasserstein Barycenters ( http://arxiv.org/abs/2108.12463v1 ) ライセンス: Link先を確認 | Pierre Colombo, Guillaume Staerman, Chloe Clavel, Pablo Piantanida | (参考訳) 新しいメトリクス \texttt{BaryScore} は、深くコンテキスト化された埋め込み(\textit{e.g)に基づいたテキスト生成を評価する。
BERT, Roberta, ELMo) が導入された。
このメトリックは、最適なトランスポートツールである \textit{i.e.} に依存する新しいフレームワークによって動機付けられる。
が、wasserstein距離とbarycenter距離である。
深く文脈化された埋め込みの層出力をベクトル埋め込みではなく確率分布としてモデル化することで、このフレームワークはワッサースタイン空間トポロジーを通して異なる出力を集約する自然な方法を提供する。
さらに、メトリクスの理論的根拠を提供し、利用可能なソリューションの代替を提供する(例えば、\textit{e})。
moverscore と bertscore) である。
機械翻訳,要約,データ2テキスト生成,画像キャプションの4つのタスクで数値評価を行う。
以上の結果から,texttt{BaryScore} は他のBERT ベースの指標よりも優れており,特にテキスト要約において一貫した振る舞いを示すことがわかった。 A new metric \texttt{BaryScore} to evaluate text generation based on deep contextualized embeddings (\textit{e.g.}, BERT, Roberta, ELMo) is introduced. This metric is motivated by a new framework relying on optimal transport tools, \textit{i.e.}, Wasserstein distance and barycenter. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; this framework provides a natural way to aggregate the different outputs through the Wasserstein space topology. In addition, it provides theoretical grounds to our metric and offers an alternative to available solutions (\textit{e.g.}, MoverScore and BertScore). Numerical evaluation is performed on four different tasks: machine translation, summarization, data2text generation and image captioning. Our results show that \texttt{BaryScore} outperforms other BERT based metrics and exhibits more consistent behaviour in particular for text summarization. | 翻訳日:2021-08-31 15:02:47 公開日:2021-08-27 |
# 汎用音声対話表現のためのコードスイッチインスパイアロス Code-switched inspired losses for generic spoken dialog representations ( http://arxiv.org/abs/2108.12465v1 ) ライセンス: Link先を確認 | Emile Chapuis, Pierre Colombo, Matthieu Labeau, Chloe Clave | (参考訳) 音声対話システムは、会話内の複数の言語と多言語性の両方を扱える必要がある(コードスイッチの場合、\textit{e})。
本研究では,多言語音声対話表現の学習に適した事前学習損失を提案する。
これらの損失の目標は、モデルをコード変更言語に公開することだ。
トレーニングをスケールアップするために、24.3Gトークンからなる巨大な多言語コーパスである \texttt{OpenSubtitles} から5つの言語(フランス語、イタリア語、英語、ドイツ語、スペイン語)で多言語会話からなる事前学習コーパスを自動構築する。
同じ言語で5つのダイアログアクトコーパスからなる新しいベンチマークである \texttt{miam} でジェネリック表現をテストし、2つの新しい多言語下流タスク(\textit{i.e} multilingual mask utterance search and multilingual inconsistency identification)をテストした。
実験の結果、新しいコードの変更による損失は、単言語と多言語の両方でより良いパフォーマンスを実現することがわかった。 Spoken dialog systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e.g} in case of code-switching). In this work, we introduce new pretraining losses tailored to learn multilingual spoken dialog representations. The goal of these losses is to expose the model to code-switched language. To scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from \texttt{OpenSubtitles}, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on \texttt{MIAM}, a new benchmark composed of five dialog act corpora on the same aforementioned languages as well as on two novel multilingual downstream tasks (\textit{i.e} multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new code switched-inspired losses achieve a better performance in both monolingual and multilingual settings. | 翻訳日:2021-08-31 15:02:30 公開日:2021-08-27 |
# ReGen:事前学習言語モデルを用いたテキストと知識ベース生成のための強化学習 ReGen: Reinforcement Learning for Text and Knowledge Base Generation using Pretrained Language Models ( http://arxiv.org/abs/2108.12472v1 ) ライセンス: Link先を確認 | Pierre L. Dognin, Inkit Padhi, Igor Melnyk, Payel Das | (参考訳) テキストから関連する知識ベース(kbs)を自動的に構築し、kbから意味的に意味のあるテキストを生成することは、機械学習の長年の目標である。
本稿では,強化学習(Reinforcement Learning, RL)を利用した双方向のテキストとグラフを生成するReGenを提案する。
グラフリニアイゼーションによって,生成方向に関わらず,シーケンス生成問題のシーケンスとして両方のタスクを再構成することが可能となり,モデル自体が自己批判的シーケンストレーニング(scst)につながる自身の批評家として採用されるシーケンストレーニングへの強化学習が利用可能となる。
我々は,WebNLG+ 2020 および TekGen データセット上で,SCST による RL の利用がグラフおよびテキスト生成に有効であることを示す広範な調査を行った。
本システムは,テキスト・ツー・グラフ・ツー・テキスト生成タスクにおける WebNLG 2020+ Challenge の公開結果を大幅に改善することで,WebNLG+ 2020 の最先端結果を提供する。 Automatic construction of relevant Knowledge Bases (KBs) from text, and generation of semantically meaningful text from KBs are both long-standing goals in Machine Learning. In this paper, we present ReGen, a bidirectional generation of text and graph leveraging Reinforcement Learning (RL) to improve performance. Graph linearization enables us to re-frame both tasks as a sequence to sequence generation problem regardless of the generative direction, which in turn allows the use of Reinforcement Learning for sequence training where the model itself is employed as its own critic leading to Self-Critical Sequence Training (SCST). We present an extensive investigation demonstrating that the use of RL via SCST benefits graph and text generation on WebNLG+ 2020 and TekGen datasets. Our system provides state-of-the-art results on WebNLG+ 2020 by significantly improving upon published results from the WebNLG 2020+ Challenge for both text-to-graph and graph-to-text generation tasks. | 翻訳日:2021-08-31 14:59:08 公開日:2021-08-27 |
# 生成モデルによる高次元不均一データセットのマルチモーダルデータ融合 Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via Generative Models ( http://arxiv.org/abs/2108.12445v1 ) ライセンス: Link先を確認 | Yasin Yilmaz, Mehmet Aktukmak, Alfred O. Hero | (参考訳) 主成分分析、因子分析、多様体学習といった一般的な潜在空間埋め込み技術は、通常、均質なデータの効果的な表現を学ぶために用いられる。
しかし、これらは数値変数と分類変数の組み合わせである異種データ(例えば、GPSとテキストデータから生じるような)に容易に拡張できない。
本稿では,高次元不均一データから確率的生成モデルを教師なしで学習することに関心がある。
学習された生成モデルは、データの多次元に共通する要素をキャプチャする潜在統一表現を提供し、様々な機械学習タスクにマルチモーダルデータを融合可能にする。
ベイズ的アプローチに従い,分布の指数関数族を自然パラメータ化することで,異なるデータ型を結合する汎用フレームワークを提案する。
モデル推論を何千もの特徴を持つ数百万のインスタンスに拡張するために、非線形リンク関数を含む後続計算にLaplace-Bernstein近似を用いる。
提案手法は,実数値(ガウシアン)と分類的(多項)特徴を持つ不均質なデータセットについて詳細に提示する。
2つの高次元および異種データセット(nyc taxiおよびmovielens-10m)の実験は、異常検出、データインプテーション、レコメンダシステムなどの異なる機械学習タスクにおける提案アルゴリズムのスケーラビリティと競合性を示している。 The commonly used latent space embedding techniques, such as Principal Component Analysis, Factor Analysis, and manifold learning techniques, are typically used for learning effective representations of homogeneous data. However, they do not readily extend to heterogeneous data that are a combination of numerical and categorical variables, e.g., arising from linked GPS and text data. In this paper, we are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion. The learned generative model provides latent unified representations that capture the factors common to the multiple dimensions of the data, and thus enable fusing multimodal data for various machine learning tasks. Following a Bayesian approach, we propose a general framework that combines disparate data types through the natural parameterization of the exponential family of distributions. To scale the model inference to millions of instances with thousands of features, we use the Laplace-Bernstein approximation for posterior computations involving nonlinear link functions. The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features. Experiments on two high-dimensional and heterogeneous datasets (NYC Taxi and MovieLens-10M) demonstrate the scalability and competitive performance of the proposed algorithm on different machine learning tasks such as anomaly detection, data imputation, and recommender systems. | 翻訳日:2021-08-31 14:56:44 公開日:2021-08-27 |
# 畳み込みニューラルネットワークを用いた物体検出におけるX線エネルギー応答画像の効果について On the impact of using X-ray energy response imagery for object detection via Convolutional Neural Networks ( http://arxiv.org/abs/2108.12505v1 ) ライセンス: Link先を確認 | Neelanjan Bhowmik, Yona Falinie A. Gaus, Toby P. Breckon | (参考訳) 複雑で散在したX線セキュリティ画像内の禁止アイテムの自動検出は、自動禁止アイテム検出が主に擬似色(rgb})X線画像に焦点をあてる交通安全維持に不可欠である。
本研究では,Rgbと比較して,X線エネルギー応答(高,低)および実効zの影響を,X線バッグセキュリティスクリーニングにおける共同物体検出およびセグメンテーションタスクの深部畳み込みニューラルネットワーク(CNN)を用いて検討する。
本稿では,最先端のcnnアーキテクチャ(mask r-cnn,yolact,carafe,cascade mask r-cnn)を評価し,画像形状や解像度,素材色プロファイルの異なるx線セキュリティスキャナ間の「raw」変種画像によるモデルの転送可能性について検討する。
総じて,carafeを用いた最大検出性能は,rgb,high,low, effective-zのx線画像の組み合わせにより,6種類の対象検出問題に対して0.7平均精度(map)を得た。
また,rgb,高,低,実効Z画像を組み合わせた一クラス物体検出問題に対して,クロススキャナ転送性(AP: 0.835/0.611)の点で顕著な一般化能力を示した。 Automatic detection of prohibited items within complex and cluttered X-ray security imagery is essential to maintaining transport security, where prior work on automatic prohibited item detection focus primarily on pseudo-colour (rgb}) X-ray imagery. In this work we study the impact of variant X-ray imagery, i.e., X-ray energy response (high, low}) and effective-z compared to rgb, via the use of deep Convolutional Neural Networks (CNN) for the joint object detection and segmentation task posed within X-ray baggage security screening. We evaluate state-of-the-art CNN architectures (Mask R-CNN, YOLACT, CARAFE and Cascade Mask R-CNN) to explore the transferability of models trained with such 'raw' variant imagery between the varying X-ray security scanners that exhibits differing imaging geometries, image resolutions and material colour profiles. Overall, we observe maximal detection performance using CARAFE, attributable to training using combination of rgb, high, low, and effective-z X-ray imagery, obtaining 0.7 mean Average Precision (mAP) for a six class object detection problem. Our results also exhibit a remarkable degree of generalisation capability in terms of cross-scanner transferability (AP: 0.835/0.611) for a one class object detection problem by combining rgb, high, low, and effective-z imagery. | 翻訳日:2021-08-31 14:55:33 公開日:2021-08-27 |
# youtubeチャンネルにおけるユーザの注意に関する観察を用いたニュースメディアの報告の事実性予測 Predicting the Factuality of Reporting of News Media Using Observations About User Attention in Their YouTube Channels ( http://arxiv.org/abs/2108.12519v1 ) ライセンス: Link先を確認 | Krasimira Bozhanova, Yoan Dinkov, Ivan Koychev, Maria Castaldo, Tommaso Venturini, Preslav Nakov | (参考訳) 本稿では,YouTubeチャンネルにおける利用者の注意周期を調査し,ニュースメディアの報道の事実を予測するための新しい枠組みを提案する。
特に、ビデオのビュー数、いいね!、嫌悪、コメントの数の時間的変化から派生した、豊富な機能セットを設計し、それをチャンネルレベルに集約します。
我々は,489のニュースメディアのYouTubeチャンネルにおけるユーザの注意を観察するデータセットを開発し,リリースする。
我々の実験は、最先端のテキスト表現に対する相補性と大きな改善の両方を示している。 We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations. | 翻訳日:2021-08-31 14:53:41 公開日:2021-08-27 |
# ラディンの絶滅危惧言語保存のための音声表現と音素分類 Speech Representations and Phoneme Classification for Preserving the Endangered Language of Ladin ( http://arxiv.org/abs/2108.12531v1 ) ライセンス: Link先を確認 | Zane Durante, Leena Mathur, Eric Ye, Sichong Zhao, Tejas Ramdas, Khalil Iskarous | (参考訳) 世界の7000の言語の大部分は、イタリア・アルプスからの絶滅危惧言語であるラディンを含む、この世紀中に絶滅すると予測されている。
言語の音韻構造と音韻構造を保存するために働く言語学者は、母語話者から毎分音声の書き起こしに何時間も費やすことができる。
本稿では,この問題を解決するために,32種類のラディン音素を分類するための音声表現と機械学習モデルについて,最初の分析を行う。
我々はイタリアの母語話者から収集されたファシアン方言ラディンの新たなデータセットを実験した。
フレームレベルおよびセグメントレベルの音声特徴抽出手法を作成し,9つの異なる音声表現を訓練した8つの分類器を用いて広範囲な実験を行った。
私たちの音声表現は、従来の特徴(MFCC、LPC)から、ディープニューラルネットワークモデル(オートエンコーダ、LSTMオートエンコーダ、WaveNet)で学んだ特徴まで様々でした。
音声信号の MFCC 表現に基づいて訓練した最高性能分類器は,すべてのラディン音素に対して平均86%の精度を達成した。
また,ラディン音素部分群では平均77%以上の確率を示した。
本研究は,識別的ラディン音素表現の学習に寄与し,機械学習と音声信号処理を活用してラディンや他の絶滅危惧言語を保存する可能性を示す。 A vast majority of the world's 7,000 spoken languages are predicted to become extinct within this century, including the endangered language of Ladin from the Italian Alps. Linguists who work to preserve a language's phonetic and phonological structure can spend hours transcribing each minute of speech from native speakers. To address this problem in the context of Ladin, our paper presents the first analysis of speech representations and machine learning models for classifying 32 phonemes of Ladin. We experimented with a novel dataset of the Fascian dialect of Ladin, collected from native speakers in Italy. We created frame-level and segment-level speech feature extraction approaches and conducted extensive experiments with 8 different classifiers trained on 9 different speech representations. Our speech representations ranged from traditional features (MFCC, LPC) to features learned with deep neural network models (autoencoders, LSTM autoencoders, and WaveNet). Our highest-performing classifier, trained on MFCC representations of speech signals, achieved an 86% average accuracy across all Ladin phonemes. We also obtained average accuracies above 77% for all Ladin phoneme subgroups examined. Our findings contribute insights for learning discriminative Ladin phoneme representations and demonstrate the potential for leveraging machine learning and speech signal processing to preserve Ladin and other endangered languages. | 翻訳日:2021-08-31 14:53:31 公開日:2021-08-27 |
# 雑音データから線形演算子を学習するための収束率 Convergence Rates for Learning Linear Operators from Noisy Data ( http://arxiv.org/abs/2108.12515v1 ) ライセンス: Link先を確認 | Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, Andrew M. Stuart | (参考訳) ヒルベルト空間上で線形作用素を学習するベイズ逆問題について,無作為入力データを用いたノイズのある点的評価から検討する。
提案手法では, この対象演算子は, 与えられた統計モデルから生じるガウス前値および雑音共分散演算子と共有され, コンパクト, 有界, および非有界な対象演算子を扱うことができることを前提として, 自己随伴的かつ対角的であることを仮定する。
ボシュナーノルムの族に関して、データの数は無限大であり、推定誤差に関する関連する下限を導出する傾向があるため、後部収縮率を確立する。
大規模データ限界では, 後方平均点推定器に付随する, 最適に定義された過剰リスクと一般化ギャップ関数の漸近収束率も提供する。
これにより、後続の一貫性を非パラメトリック学習理論に接続する。
さらに、これらの収束率は、有界あるいはコンパクトな作用素の学習と比較して、非有界線型作用素の学習の難しさを強調し、定量化する。
数値実験はこの理論を検証し、より一般的な問題において同様の結論が期待できることを示した。 We study the Bayesian inverse problem of learning a linear operator on a Hilbert space from its noisy pointwise evaluations on random input data. Our framework assumes that this target operator is self-adjoint and diagonal in a basis shared with the Gaussian prior and noise covariance operators arising from the imposed statistical model and is able to handle target operators that are compact, bounded, or even unbounded. We establish posterior contraction rates with respect to a family of Bochner norms as the number of data tend to infinity and derive related lower bounds on the estimation error. In the large data limit, we also provide asymptotic convergence rates of suitably defined excess risk and generalization gap functionals associated with the posterior mean point estimator. In doing so, we connect the posterior consistency results to nonparametric learning theory. Furthermore, these convergence rates highlight and quantify the difficulty of learning unbounded linear operators in comparison with the learning of bounded or compact ones. Numerical experiments confirm the theory and demonstrate that similar conclusions may be expected in more general problem settings. | 翻訳日:2021-08-31 14:51:09 公開日:2021-08-27 |
# 意見の変更: 時間順応的なスタンス分類 Opinions are Made to be Changed: Temporally Adaptive Stance Classification ( http://arxiv.org/abs/2108.12476v1 ) ライセンス: Link先を確認 | Rabab Alkhalifa, Elena Kochkina, Arkaitz Zubiaga | (参考訳) ソーシャルメディアの急速な発展と人々の見解を考えると、言葉の使用は時間とともに変化する。
したがって、古いテキストデータでトレーニングされた分類器の性能は、新しいデータでテストすると劇的に低下する可能性がある。
近年、スタンス分類の研究が進んでいるが、これらの分類器に持続的な性能を持たせるための努力は行われていない。
この現象を研究するために,2つの新しい大規模縦型姿勢データセットを導入する。
次に,姿勢分類器の性能持続性を時間とともに評価し,トレーニングとテストデータの時間的ギャップが大きくなると,それがどのように減衰するかを示す。
本稿では,姿勢分類器の訓練に用いる単語埋め込みの時間適応に基づく,この性能低下を緩和するための新しい手法を提案する。
これにより、費用のかかるアノテーション作業ではなく、現在の期間から簡単に利用できるラベルなしデータを利用することができます。
組込み適応に対するいくつかのアプローチを提案し比較し、インクリメンタル・テンポラル・アライメント(ITA)モデルが時間とともに性能低下を減少させる最良の結果をもたらすことを見出した。 Given the rapidly evolving nature of social media and people's views, word usage changes over time. Consequently, the performance of a classifier trained on old textual data can drop dramatically when tested on newer data. While research in stance classification has advanced in recent years, no effort has been invested in making these classifiers have persistent performance over time. To study this phenomenon we introduce two novel large-scale, longitudinal stance datasets. We then evaluate the performance persistence of stance classifiers over time and demonstrate how it decays as the temporal gap between training and testing data increases. We propose a novel approach to mitigate this performance drop, which is based on temporal adaptation of the word embeddings used for training the stance classifier. This enables us to make use of readily available unlabelled data from the current time period instead of expensive annotation efforts. We propose and compare several approaches to embedding adaptation and find that the Incremental Temporal Alignment (ITA) model leads to the best results in reducing performance drop over time. | 翻訳日:2021-08-31 14:50:03 公開日:2021-08-27 |
# プロトタイプメモリによるテーブル・ツー・テキスト生成 Few-Shot Table-to-Text Generation with Prototype Memory ( http://arxiv.org/abs/2108.12516v1 ) ライセンス: Link先を確認 | Yixuan Su, Zaiqiao Meng, Simon Baker, Nigel Collier | (参考訳) ニューラルテーブル-テキスト生成モデルは、タスクの配列において顕著な進歩を遂げた。
しかし、ニューラルモデルのデータ不足の性質のため、彼らのパフォーマンスは大規模トレーニングの例に強く依存しており、実際のアプリケーションへの適用性を制限する。
そこで我々はP2G(Prototype-to-Generate)という新しいフレームワークを提案する。
提案フレームワークは、IRシステムと新しいプロトタイプセレクタによって共同で選択された検索されたプロトタイプを利用して、テーブルとテキスト間の構造的ギャップを埋めるモデルを支援する。
3つの最先端モデルを用いた3つのベンチマークデータセットの実験結果から,提案手法は各種評価指標のモデル性能を著しく改善することが示された。 Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics. | 翻訳日:2021-08-31 14:49:46 公開日:2021-08-27 |
# Causal BootstrapsによるPulling Up: トレーニング前障害に対するCausal Data Augmentation Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing ( http://arxiv.org/abs/2108.12510v1 ) ライセンス: Link先を確認 | Sindhu C.M. Gowda, Shalmali Joshi, Haoran Zhang and Marzyeh Ghassemi | (参考訳) 機械学習モデルは、多くの教師付き学習タスクで最先端のパフォーマンスを達成する。
しかし、以前の証拠は、これらのモデルが優れた予測性能のために近距離バイアスや(直観的には、試験中に保持されない相関)散発的な相関に依存することを学んでいることを示唆している。
このようなモデルは、正確な予測を提供するため、デプロイメント環境では信頼できない。
因果レンズから問題を見ることは有用であることが知られているが、機械学習パイプラインへの因果テクニックのシームレスな統合は複雑で高価である。
本研究では, 因果ブートストラップ (CB) と呼ばれる因果学習前脱バイアス法を, 5つの既成データ生成獲得シナリオに基づいて検討し, 拡張する。
これらの条件下では, バイアスが深層学習モデルの性能に与える影響を系統的に検討し, バイアスが適切に考慮されていない場合に, ショートカットバイアスに依存する傾向を示す。
このような因果的事前学習手法が,実世界のドメイン一般化ベンチマークタスクにおける偏りを緩和するために,既存のベースプラクティスを著しく上回ることを実証する。
この体系的な調査は、基盤となるデータ生成メカニズムの会計の重要性と、バイアスの形成にロバストな方法を開発するための因果的フレームワークによるデータ前処理パイプラインの強化を強調するものだ。 Machine learning models achieve state-of-the-art performance on many supervised learning tasks. However, prior evidence suggests that these models may learn to rely on shortcut biases or spurious correlations (intuitively, correlations that do not hold in the test as they hold in train) for good predictive performance. Such models cannot be trusted in deployment environments to provide accurate predictions. While viewing the problem from a causal lens is known to be useful, the seamless integration of causation techniques into machine learning pipelines remains cumbersome and expensive. In this work, we study and extend a causal pre-training debiasing technique called causal bootstrapping (CB) under five practical confounded-data generation-acquisition scenarios (with known and unknown confounding). Under these settings, we systematically investigate the effect of confounding bias on deep learning model performance, demonstrating their propensity to rely on shortcut biases when these biases are not properly accounted for. We demonstrate that such a causal pre-training technique can significantly outperform existing base practices to mitigate confounding bias on real-world domain generalization benchmarking tasks. This systematic investigation underlines the importance of accounting for the underlying data-generating mechanisms and fortifying data-preprocessing pipelines with a causal framework to develop methods robust to confounding biases. | 翻訳日:2021-08-31 14:33:11 公開日:2021-08-27 |
# deep learning climate emulatorにおける特徴量の重要性 Feature Importance in a Deep Learning Climate Emulator ( http://arxiv.org/abs/2108.13203v1 ) ライセンス: Link先を確認 | Wei Xu, Xihaier Luo, Yihui Ren, Ji Hwan Park, Shinjae Yoo, Balasubramanya T. Nadiga | (参考訳) 本稿では,気候の深層学習(dl)エミュレータを"理解"するための重要度評価手法として,ポストホックな局所的説明手法のクラスを用いる。
具体的には,DenseNetエンコーダ・デコーダアーキテクチャを用いたマルチインプット単一出力エミュレータについて検討し,過去36ヶ月のSSTデータを用いて,海面温度(SST)の経年変化を1,6,9ヶ月のリードタイムで予測する訓練を行った。
まず,選択した地理的領域におけるモデル予測と選択した予測リード時間において重要な入力特徴を時空間的に同定する。
第2のステップでは、トレーニングサンプルに対する重要熱マップの集約を考慮し、一般化された意味での特徴的重要性の挙動についても検討する。
1)任意の地理的な場所における気候エミュレータの予測は、その周辺の小さな地区に支配的に依存する。2) 予測のリードタイムが長ければ長いほど、"importance"はより長くなり、3) 先行する順に、"importance" の時間的減衰は地理的な場所とは独立している。
結果を検証するためにアブレーション実験が採用されている。
気候力学の観点からは,これらの知見は局地的プロセスにおいて支配的な役割を担い,空間的・時間的スケールにおいて遠隔通信において無視可能な役割を担っていると考えられる。
ネットワークアーキテクチャの観点からは、入力と出力の時空間的関係は潜在的なモデル改善を示唆している。
我々は、現在進行中の作業で検討している手法のさらなる拡張について論じる。 We present a study using a class of post-hoc local explanation methods i.e., feature importance methods for "understanding" a deep learning (DL) emulator of climate. Specifically, we consider a multiple-input-single-output emulator that uses a DenseNet encoder-decoder architecture and is trained to predict interannual variations of sea surface temperature (SST) at 1, 6, and 9 month lead times using the preceding 36 months of (appropriately filtered) SST data. First, feature importance methods are employed for individual predictions to spatio-temporally identify input features that are important for model prediction at chosen geographical regions and chosen prediction lead times. In a second step, we also examine the behavior of feature importance in a generalized sense by considering an aggregation of the importance heatmaps over training samples. We find that: 1) the climate emulator's prediction at any geographical location depends dominantly on a small neighborhood around it; 2) the longer the prediction lead time, the further back the "importance" extends; and 3) to leading order, the temporal decay of "importance" is independent of geographical location. An ablation experiment is adopted to verify the findings. From the perspective of climate dynamics, these findings suggest a dominant role for local processes and a negligible role for remote teleconnections at the spatial and temporal scales we consider. From the perspective of network architecture, the spatio-temporal relations between the inputs and outputs we find suggest potential model refinements. We discuss further extensions of our methods, some of which we are considering in ongoing work. | 翻訳日:2021-08-31 14:29:29 公開日:2021-08-27 |
# 不確実性を考慮した確率損失関数を用いたDNA符号化ライブラリカウントデータの機械学習 Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function ( http://arxiv.org/abs/2108.12471v1 ) ライセンス: Link先を確認 | Katherine S. Lim, Andrew G. Reidenbach, Bruce K. Hua, Jeremy W. Mason, Christopher J. Gerry, Paul A. Clemons, Connor W. Coley | (参考訳) DNAエンコードライブラリー(DEL)スクリーニングと量的構造活性相関(QSAR)モデリングは、タンパク質標的を結合する小さな分子を見つけるために薬物発見に使用される2つの手法である。
QSARモデリングをDELデータに適用することで、オフDNA合成および評価のための化合物の選択が容易になる。
このような組み合わせのアプローチは、最近、DELデータのスパースでノイズの多い性質に対応するために、集約された「ディシンソン」のDEL豊かさを学習するためのバイナリ分類器の訓練によって示されている。
しかし、バイナリ分類器は、異なるレベルの濃縮を区別できず、ディシントン凝集中に情報が失われる可能性がある。
本稿では,delデータを効果的にデノベーションし,学習構造-活性関係(sar)を可視化する機会を導入するカスタム負のlog-likelihood loss関数を用いて,個々の分子のデル富化を学習する回帰アプローチを示す。
本手法はDEL実験ワークフローで使用されるシークエンシング過程のポアソン統計を頻繁な視点でモデル化する。
本稿では、CAIXに対する108k化合物のデータセットと、sEHおよびSIRT2に対する5.7M化合物のデータセットについて説明する。
負の対数類似損失関数によるデータの不確実性の処理により、モデルは低信頼の外れ値を無視しうる。
提案手法は, 新規構造に対する外挿の利点を示すものではないが, DELデータにおけるSARトレンドの同定と医薬用疎水剤の濃縮に有効なデノナイズと可視化パイプラインが期待できる。
さらに、不確実性認識回帰に対するこのアプローチは、確率性の性質が知られている、あるいはモデル化できる他のスパースまたはノイズデータセットに適用され、特に、我々が使用するポアソン濃縮比メトリックは、2つの実験条件間でカウントデータをシークエンシングする他の設定に適用することができる。 DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find small molecules that bind a protein target. Applying QSAR modeling to DEL data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been shown recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" to accommodate the sparse and noisy nature of DEL data. However, a binary classifier cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules using a custom negative log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships (SAR). Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a dataset of 108k compounds screened against CAIX, and a dataset of 5.7M compounds screened against sEH and SIRT2. Due to the treatment of uncertainty in the data through the negative log-likelihood loss function, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying SAR trends and enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions. | 翻訳日:2021-08-31 14:24:08 公開日:2021-08-27 |
# Mal2GCN:非負重み付きディープグラフ畳み込みネットワークを用いたロバストなマルウェア検出手法 Mal2GCN: A Robust Malware Detection Approach Using Deep Graph Convolutional Networks With Non-Negative Weights ( http://arxiv.org/abs/2108.12473v1 ) ライセンス: Link先を確認 | Omid Kargarnovin, Amir Mahdi Sadeghzadeh, and Rasool Jalili | (参考訳) さまざまな問題を解決するために機械学習を使うというペースが高まる中、これらのモデルを敵から守ることが研究者の主な関心事となっている。
最近の研究では、敵の環境では、機械学習モデルは敵の例に弱いことが示されており、敵はモデルを騙すために慎重に入力を作成することができる。
ディープニューラルネットワークの出現により、多くの研究者がディープニューラルネットワークを様々なタスクに使用し、素晴らしい結果を得た。
これらのモデルは、特にマルウェア検出などのセキュリティ関連分野において、安全に配置される前に攻撃に対して堅牢になる必要がある。
本稿では,ブラックボックスのソースコードをベースとしたマルウェア生成手法を提案し,実際の敵に対するマルウェア検出モデルの堅牢性を評価する。
提案手法は,マルウェア検出モデルを回避するために,マルウェアソースコードの様々な場所に敵のコードを注入する。
次に,ロバストなマルウェア検出モデルmal2gcnを提案する。
Mal2GCNは、グラフ畳み込みネットワークの表現力と非負の重み付け訓練法を組み合わせて、高い検出精度のマルウェア検出モデルを作成する。 With the growing pace of using machine learning to solve various problems, securing these models against adversaries has become one of the main concerns of researchers. Recent studies have shown that in an adversarial environment, machine learning models are vulnerable to adversarial examples, and adversaries can create carefully crafted inputs to fool the models. With the advent of deep neural networks, many researchers have used deep neural networks for various tasks, and have achieved impressive results. These models must become robust against attacks before being deployed safely, especially in security-related fields such as malware detection. In this paper, we first present a black-box source code-based adversarial malware generation approach that can be used to evaluate the robustness of malware detection models against real-world adversaries. The proposed approach injects adversarial codes into the various locations of malware source codes to evade malware detection models. We then propose Mal2GCN, a robust malware detection model. Mal2GCN uses the representation power of graph convolutional networks combined with the non-negative weights training method to create a malware detection model with high detection accuracy, which is also robust against adversarial attacks that add benign features to the input. | 翻訳日:2021-08-31 14:23:34 公開日:2021-08-27 |
# 高忠実度深層学習に基づくMRI画像再構成 High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss ( http://arxiv.org/abs/2108.12460v1 ) ライセンス: Link先を確認 | Ke Wang, Jonathan I Tamir, Alfredo De Goyeneche, Uri Wollner, Rafi Brada, Stella Yu and Michael Lustig | (参考訳) 目的: 深層学習に基づく再構成における微細構造とテクスチャの再現性を向上させること。
方法:新しいパッチベースのunsupervised Feature Loss(UFLoss)を提案し,DLベースの再構築フレームワークのトレーニングに組み込むことにより,知覚的類似性と高次統計量を維持する。
UFLossは類似のインスタンスを類似の低次元特徴ベクトルにマッピングすることでインスタンスレベルの識別を提供し、人間のアノテーションなしで訓練される。
訓練中に低次元特徴空間に付加的な損失関数を追加することで、アンサンプリングまたは破損したデータからの再構成フレームワークは、より細かいテクスチャ、鋭いエッジ、全体的な画質で元のものと近い、より現実的な画像を再現することができる。
提案するUFLossの性能は,2次元および3次元膝関節のMRI再構成とリフレクションアンダーサンプリングを併用したアンロールネットワークで実証された。
nrmse, ssim, および提案するuflosを含む定量的指標を用いて, 提案手法の性能を評価し, 他の手法と比較した。
結果: in-vivo実験では,uflossを添加することで,従来のl2損失を伴う学習ベースの手法と比較して,より鋭いエッジとより忠実なコントラストが促進されることが示された。
より詳細なテクスチャは2Dと3Dの膝のMR画像で見ることができる。
UFLoss を用いた再建は, より低い値の UFLoss を達成しつつ, 同等の NRMSE と高い SSIM が得られることを示す。
結論:uflossは,dlベースの再構築のトレーニングにより,より詳細なテクスチャ,より細かな特徴,よりシャープなエッジを,dlベースの再構築フレームワークの下で高画質で得ることができるパッチベースの教師なし学習機能損失である。 Purpose: To improve reconstruction fidelity of fine structures and textures in deep learning (DL) based reconstructions. Methods: A novel patch-based Unsupervised Feature Loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. The UFLoss provides instance-level discrimination by mapping similar instances to similar low-dimensional feature vectors and is trained without any human annotation. By adding an additional loss function on the low-dimensional feature space during training, the reconstruction frameworks from under-sampled or corrupted data can reproduce more realistic images that are closer to the original with finer textures, sharper edges, and improved overall image quality. The performance of the proposed UFLoss is demonstrated on unrolled networks for accelerated 2D and 3D knee MRI reconstruction with retrospective under-sampling. Quantitative metrics including NRMSE, SSIM, and our proposed UFLoss were used to evaluate the performance of the proposed method and compare it with others. Results: In-vivo experiments indicate that adding the UFLoss encourages sharper edges and more faithful contrasts compared to traditional and learning-based methods with pure l2 loss. More detailed textures can be seen in both 2D and 3D knee MR images. Quantitative results indicate that reconstruction with UFLoss can provide comparable NRMSE and a higher SSIM while achieving a much lower UFLoss value. Conclusion: We present UFLoss, a patch-based unsupervised learned feature loss, which allows the training of DL-based reconstruction to obtain more detailed texture, finer features, and sharper edges with higher overall image quality under DL-based reconstruction frameworks. | 翻訳日:2021-08-31 14:17:57 公開日:2021-08-27 |
# (参考訳) ユーザ中心半自動インフォグラフィック作成とレコメンデーション User-Centric Semi-Automated Infographics Authoring and Recommendation ( http://arxiv.org/abs/2108.11914v2 ) ライセンス: CC BY 4.0 | Anjul Tyagi, Jian Zhao, Pushkar Patel, Swasti Khurana, Klaus Mueller | (参考訳) インフォグラフィックの設計は、プロのデザイナーでさえ、非専門家や時間消費にとって退屈なプロセスである。
そこで本研究では,自動および半自動インフォグラフィック設計のための柔軟な枠組みを提案する。
このフレームワークはインフォグラフィックで主要なデザインコンポーネントをキャプチャし、生成ワークフローを3つのステップに合理化し、各アスペクトを独立して制御し、最適化することができる。
また,このフレームワークをベースとして,インフォグラフィックの異なるデザインコンポーネントの推薦を提供することで,入力から高品質なインフォグラフィックを作成できる対話型ツールである \name{} を提案する。
同時に、より経験豊富なデザイナーは、canvasを使ってツールにカスタムデザインとレイアウトのアイデアを提供し、自動生成プロセスの一部を制御できる。
作業の一環として、個別の視覚グループ(VG)と接続設計データセット(SVG)と、セグメント化されたVGを備えた1k完全インフォグラフィックイメージデータセットも提供しています。
このデータセットは、我々のフレームワークによって作成されたインフォグラフィックデザインの多様化に重要な役割を果たします。
我々は,類似ツールとの比較,初心者および専門家によるユーザスタディ,ケーススタディを用いて,アプローチを評価した。
その結果、我々のフレームワークと \name{} は、カスタマイズしたインフォグラフィックを作成し、様々なデザインを探索する上で優れていることを確認した。 Designing infographics can be a tedious process for non-experts and time-consuming even for professional designers. Based on the literature and a formative study, we propose a flexible framework for automated and semi-automated infographics design. This framework captures the main design components in infographics and streamlines the generation workflow into three steps, allowing users to control and optimize each aspect independently. Based on the framework, we also propose an interactive tool, \name{}, for assisting novice designers with creating high-quality infographics from an input in a markdown format by offering recommendations of different design components of infographics. Simultaneously, more experienced designers can provide custom designs and layout ideas to the tool using a canvas to control the automated generation process partially. As part of our work, we also contribute an individual visual group (VG) and connection designs dataset (in SVG), along with a 1k complete infographic image dataset with segmented VGs. This dataset plays a crucial role in diversifying the infographic designs created by our framework. We evaluate our approach with a comparison against similar tools, a user study with novice and expert designers, and a case study. Results confirm that our framework and \name{} excel in creating customized infographics and exploring a large variety of designs. | 翻訳日:2021-08-31 11:34:32 公開日:2021-08-27 |
# (参考訳) 新しい顔提示攻撃の検出と継続学習 Detection and Continual Learning of Novel Face Presentation Attacks ( http://arxiv.org/abs/2108.12081v1 ) ライセンス: CC BY 4.0 | Mohammad Rostami, Leonidas Spinoulas, Mohamed Hussein, Joe Mathai, Wael Abd-Almageed | (参考訳) ディープラーニングの進歩と大規模なデータセットの可用性は、顔提示攻撃検出研究の大幅な改善につながった。
しかし、最先端のフェイスアンチスプーフィングシステムは、トレーニング中に見られない新しいタイプの攻撃に対して脆弱である。
さらに、そのような攻撃が正しく検出されたとしても、これらのシステムは新たに遭遇した攻撃に適応する能力に欠ける。
新しいタイプの攻撃を継続的に検出し、これらの攻撃タイプを識別する自己適応能力は、最初の検出フェーズの後、非常に魅力的である。
本稿では、深層ニューラルネットワークを用いて、トレーニングサンプルの分布外のネットワークの信頼性レベルを抑えることにより、観測された入力データポイント内の異常を潜在的に新しいタイプの攻撃として検出する。
次に、過去の学習した攻撃タイプを忘れずに、新しいタイプの攻撃に関する知識を組み込むために、experience replayを使用します。
提案手法の有効性を2つのベンチマークデータセットに示す実験結果と,多種多様な攻撃タイプを示す新たなデータセットを提案する。 Advances in deep learning, combined with availability of large datasets, have led to impressive improvements in face presentation attack detection research. However, state-of-the-art face antispoofing systems are still vulnerable to novel types of attacks that are never seen during training. Moreover, even if such attacks are correctly detected, these systems lack the ability to adapt to newly encountered attacks. The post-training ability of continually detecting new types of attacks and self-adaptation to identify these attack types, after the initial detection phase, is highly appealing. In this paper, we enable a deep neural network to detect anomalies in the observed input data points as potential new types of attacks by suppressing the confidence-level of the network outside the training samples' distribution. We then use experience replay to update the model to incorporate knowledge about new types of attacks without forgetting the past learned attack types. Experimental results are provided to demonstrate the effectiveness of the proposed method on two benchmark datasets as well as a newly introduced dataset which exhibits a large variety of attack types. | 翻訳日:2021-08-30 20:01:13 公開日:2021-08-27 |
# (参考訳) 非言語技術におけるジェンダー排他性と非言語表現の課題 Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies ( http://arxiv.org/abs/2108.12084v1 ) ライセンス: CC BY 4.0 | Sunipa Dev and Masoud Monajatipoor and Anaelia Ovalle and Arjun Subramonian and Jeff M Phillips and Kai-Wei Chang | (参考訳) ジェンダーは言語タスクの文脈や言語モデルによって伝播されるステレオタイプを調べる際に広く議論される。
しかし、現在の議論では、主に性別を二元性として扱うが、これは非二項性同一性の周期的消去のような危害を持続することができる。
これらの危害は、非認知と社会における非バイナリ性に対する理解の欠如の結果である、モデルとデータセットのバイアスによって引き起こされる。
本稿では,その周辺のジェンダーと言語が複雑化していることを説明し,英語技術におけるジェンダーの扱いにかかわる害を理解するために,非バイナリ人を対象に調査を行う。
また、現在の言語表現(例えばGloVe, BERT)が、性別情報を均等にエンコードする表現のために認識し、対処する必要があるこれらの害や関連する課題を捕捉し、永続する方法について詳述する。 Gender is widely discussed in the context of language tasks and when examining the stereotypes propagated by language models. However, current discussions primarily treat gender as binary, which can perpetuate harms such as the cyclical erasure of non-binary gender identities. These harms are driven by model and dataset biases, which are consequences of the non-recognition and lack of understanding of non-binary genders in society. In this paper, we explain the complexity of gender and language around it, and survey non-binary persons to understand harms associated with the treatment of gender as binary in English language technologies. We also detail how current language representations (e.g., GloVe, BERT) capture and perpetuate these harms and related challenges that need to be acknowledged and addressed for representations to equitably encode gender information. | 翻訳日:2021-08-30 19:37:33 公開日:2021-08-27 |
# (参考訳) オンライン行列プロファイルによるIT運用系列の異常検出 Anomaly Detection on IT Operation Series via Online Matrix Profile ( http://arxiv.org/abs/2108.12093v1 ) ライセンス: CC BY 4.0 | Shi-Ying Lan, Run-Qing Chen, Wan-Lei Zhao | (参考訳) 時系列における異常検出は、ITシステムのキーパフォーマンス指標(KPI)を監視するための基本的なタスクである。
文献にある既存のアプローチは多くのトレーニングリソースを必要とするか、実際のシナリオにデプロイするのが難しいかのどちらかです。
本稿では,トレーニングを必要としないオンライン行列プロファイルを提案し,この問題に対処する。
異常は、現在のものに最も近い過去のサブシーケンスを参照することによって検出される。
距離の重要度はオンライン行列プロファイルに基づいて,異常発生時の顕著なパターンを示す。
また, 検出精度をさらに高めるために, トレーニングフリーなスペクトル残差を組み込んだ。
さらに,提案手法は,導入したキャッシュ戦略により,少なくとも4回,時系列で高速化される。
既存のアプローチと比較して、オンラインマトリックスプロファイルは精度と効率のトレードオフが良好である。
さらに重要なのは、トレーニングされたモデルの制約なしに動作するという意味で、さまざまなタイプの時系列に汎用的であることだ。 Anomaly detection on time series is a fundamental task in monitoring the Key Performance Indicators (KPIs) of IT systems. The existing approaches in the literature either require a lot of training resources or are hard to be deployed in real scenarios. In this paper, the online matrix profile, which requires no training, is proposed to address this issue. The anomalies are detected by referring to the past subsequence that is the closest to the current one. The distance significance is introduced based on the online matrix profile, which demonstrates a prominent pattern when an anomaly occurs. Another training-free approach spectral residual is integrated into our approach to further enhance the detection accuracy. Moreover, the proposed approach is sped up by at least four times for long time series by the introduced cache strategy. In comparison to the existing approaches, the online matrix profile makes a good trade-off between accuracy and efficiency. More importantly, it is generic to various types of time series in the sense that it works without the constraint from any trained model. | 翻訳日:2021-08-30 19:06:47 公開日:2021-08-27 |
# (参考訳) 単一チャンネル音声強調のためのフルアテンション双方向深層学習構造 Full Attention Bidirectional Deep Learning Structure for Single Channel Speech Enhancement ( http://arxiv.org/abs/2108.12105v1 ) ライセンス: CC BY 4.0 | Yuzi Yan, Wei-Qiang Zhang, Michael T. Johnson | (参考訳) 音声認識や音声合成などの他の重要な技術の基礎として、音声信号処理において音声強調は重要な領域である。
本稿では,音声強調のための新しい深層学習構造について述べる。
モデルでは,各焦点フレームの後に潜在情報を利用する双方向シーケンシャル・ツー・シーケンス法に"フル"な注意機構を導入する。
これは従来の注目に基づくRNN手法の拡張である。
提案アーキテクチャは,OM-LSA,CNN-LSTM,T-GSA,一方向注意に基づくLSTMベースラインと比較して,音声品質(PESQ)において優れた性能を実現する。 As the cornerstone of other important technologies, such as speech recognition and speech synthesis, speech enhancement is a critical area in audio signal processing. In this paper, a new deep learning structure for speech enhancement is demonstrated. The model introduces a "full" attention mechanism to a bidirectional sequence-to-sequence method to make use of latent information after each focal frame. This is an extension of the previous attention-based RNN method. The proposed bidirectional attention-based architecture achieves better performance in terms of speech quality (PESQ), compared with OM-LSA, CNN-LSTM, T-GSA and the unidirectional attention-based LSTM baseline. | 翻訳日:2021-08-30 18:52:30 公開日:2021-08-27 |
# (参考訳) シミュレーションに基づく推論による車両運動パラメータの同定 Identification of Vehicle Dynamics Parameters Using Simulation-based Inference ( http://arxiv.org/abs/2108.12114v1 ) ライセンス: CC BY 4.0 | Ali Boyali, Simon Thompson, David Robert Wong | (参考訳) タイヤと車両パラメータの同定は、自動運転車の制御と計画のアルゴリズムを設計するための重要なステップである。
本稿では,パラメータ同定のための近似ベイズ計算法(abc)の現代的解釈であるシミュレーションベース推論(sbi)を提案する。
シミュレーションに基づく推論は、機械学習文学における新たな手法であり、複雑な問題における多くのパラメータ集合の正確な結果をもたらすことが証明されている。
本稿では,高非線形車両の動力学パラメータの同定を処理し,制御方程式のパラメータを精度良く推定できることを実証する。 Identifying tire and vehicle parameters is an essential step in designing control and planning algorithms for autonomous vehicles. This paper proposes a new method: Simulation-Based Inference (SBI), a modern interpretation of Approximate Bayesian Computation methods (ABC) for parameter identification. The simulation-based inference is an emerging method in the machine learning literature and has proven to yield accurate results for many parameter sets in complex problems. We demonstrate in this paper that it can handle the identification of highly nonlinear vehicle dynamics parameters and gives accurate estimates of the parameters for the governing equations. | 翻訳日:2021-08-30 18:43:30 公開日:2021-08-27 |
# (参考訳) Canoe : ニューラルネットワークのための協調学習システム Canoe : A System for Collaborative Learning for Neural Nets ( http://arxiv.org/abs/2108.12124v1 ) ライセンス: CC BY 4.0 | Harshit Daga, Yiwen Chen, Aastha Agrawal, Ada Gavrilovska | (参考訳) エッジコンピューティングのような高度に分散した環境では、協調学習アプローチによってグローバルな共有モデルへの依存が促進され、各場所に適したモデルが好まれる。
個別の学習コンテキストに適したモデルを作成することは、データ転送の量を減らす一方、ピア間のコラボレーションは許容できるモデルパフォーマンスを提供する。
しかし、知識が正確なモデルスライスによって容易に引き起こされない深層学習モデルでは自明ではない、知識伝達メカニズムが利用可能であると仮定する。
Canoe - ニューラルネットワークの知識伝達を容易にするフレームワークを提案する。
Canoeは、ヘルパーノードのニューラルネットワークから重要なパラメータを動的に抽出する新しいシステムサポートを提供し、ターゲットノードの予測パフォーマンスを改善するために、マルチモデルブースティングベースのアプローチでこれを使用する。
異なるPyTorchとTensorFlowニューラルネットワークモデルによるCanoeの評価は、知識伝達機構が、独立した学習に比べて3.5倍までモデルの適応性を向上し、フェデレートされた学習に比べてデータ移動コストが大幅に削減されることを示した。 For highly distributed environments such as edge computing, collaborative learning approaches eschew the dependence on a global, shared model, in favor of models tailored for each location. Creating tailored models for individual learning contexts reduces the amount of data transfer, while collaboration among peers provides acceptable model performance. Collaboration assumes, however, the availability of knowledge transfer mechanisms, which are not trivial for deep learning models where knowledge isn't easily attributed to precise model slices. We present Canoe - a framework that facilitates knowledge transfer for neural networks. Canoe provides new system support for dynamically extracting significant parameters from a helper node's neural network and uses this with a multi-model boosting-based approach to improve the predictive performance of the target node. The evaluation of Canoe with different PyTorch and TensorFlow neural network models demonstrates that the knowledge transfer mechanism improves the model's adaptiveness to changes up to 3.5X compared to learning in isolation, while affording several magnitudes reduction in data movement costs compared to federated learning. | 翻訳日:2021-08-30 18:30:05 公開日:2021-08-27 |
# (参考訳) 複雑なネットワークのダイナミクス予測のための並列機械学習 Parallel Machine Learning for Forecasting the Dynamics of Complex Networks ( http://arxiv.org/abs/2108.12129v1 ) ライセンス: CC BY 4.0 | Keshav Srinivasan, Nolan Coble, Joy Hamlin, Thomas Antonsen, Edward Ott and Michelle Girvan | (参考訳) 時系列データから大規模ネットワークのダイナミクスを予測することは、幅広い文脈において重要である。
本稿では、関心ネットワークのトポロジを模倣した並列アーキテクチャを用いて、このタスクのための機械学習手法を提案する。
本稿では,カオス型発振器ネットワーク上で貯留層計算を用いて実装した手法の有用性と拡張性を示す。
ネットワークリンクは, (i) ネットワークリンクが未知であり, (ii) 予測を概ね最適化するためのデータ駆動アプローチにより, ネットワークリンクは未知であり, 推測される。 Forecasting the dynamics of large complex networks from previous time-series data is important in a wide range of contexts. Here we present a machine learning scheme for this task using a parallel architecture that mimics the topology of the network of interest. We demonstrate the utility and scalability of our method implemented using reservoir computing on a chaotic network of oscillators. Two levels of prior knowledge are considered: (i) the network links are known; and (ii) the network links are unknown and inferred via a data-driven approach to approximately optimize prediction. | 翻訳日:2021-08-30 18:06:45 公開日:2021-08-27 |
# (参考訳) Lyra: Turducken-Styleコード生成のベンチマーク Lyra: A Benchmark for Turducken-Style Code Generation ( http://arxiv.org/abs/2108.12144v1 ) ライセンス: CC BY 4.0 | Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenjie Zhang, Lian Yu, Yingfei Xiong, Lu Zhang | (参考訳) 手動のソフトウェア開発作業を減らすにはコード生成が不可欠である。
近年,ソースコードの自動生成にニューラルネットワークが用いられている。
有望だが、これらのアプローチは単一のプログラミング言語でコードを生成するタスクで評価される。
しかし、実際の開発では、あるプログラミング言語が別の言語に埋め込まれることがしばしばある。
例えば、SQLステートメントはPythonやJavaのような基本プログラミング言語の文字列として組み込まれ、JavaScriptプログラムはPHP、Java、Pythonのような厳格なプログラミング言語に埋め込まれることが多い。
これをturduckenスタイルのプログラミングと呼びます。
本稿では,新しいコード生成タスクを定義する。自然言語のコメントを前提として,組み込み言語を用いたベース言語でのプログラム生成を目標とする。
私たちの知る限り、これが最初のturduckenスタイルのコード生成タスクです。
このタスクでは、lyra:組込みsqlを備えたpythonのデータセットです。
このデータセットは、実際のプロジェクトから2000の注意深い注釈付きデータベース操作プログラムを含んでいる。
各プログラムには、中国語のコメントと英語のコメントがペアリングされる。
実験では,最先端技術であるtransformerをベースラインとして採用した。
最良の設定では、transformerは中国語と英語のコメントでそれぞれ0.5%と1.5%の正確なマッチング精度を達成している。
したがって、lyraはコード生成に新たな課題をもたらすと信じています。 Code generation is crucial to reduce manual software development efforts. Recently, neural techniques have been used to generate source code automatically. While promising, these approaches are evaluated on tasks for generating code in single programming languages. However, in actual development, one programming language is often embedded in another. For example, SQL statements are often embedded as strings in base programming languages such as Python and Java, and JavaScript programs are often embedded in sever-side programming languages, such as PHP, Java, and Python. We call this a turducken-style programming. In this paper, we define a new code generation task: given a natural language comment, this task aims to generate a program in a base language with an embedded language. To our knowledge, this is the first turducken-style code generation task. For this task, we present Lyra: a dataset in Python with embedded SQL. This dataset contains 2,000 carefully annotated database manipulation programs from real usage projects. Each program is paired with both a Chinese comment and an English comment. In our experiment, we adopted Transformer, a state-of-the-art technique, as the baseline. In the best setting, Transformer achieves 0.5% and 1.5% AST exact matching accuracy using Chinese and English comments, respectively. Therefore, we believe that Lyra provides a new challenge for code generation. | 翻訳日:2021-08-30 18:04:35 公開日:2021-08-27 |
# (参考訳) リーマン最適化による確率的テンソル・トレインフォーマットのテンソル補完 Provable Tensor-Train Format Tensor Completion by Riemannian Optimization ( http://arxiv.org/abs/2108.12163v1 ) ライセンス: CC BY 4.0 | Jian-Feng Cai, Jingyang Li, Dong Xia | (参考訳) テンソルトレイン(TT)フォーマットは、構造上の高次テンソルを扱う上で魅力的な利点がある。
近年の10年間、様々な分野からTT形式テンソルが広く応用されているのを目撃してきた。
リーマン勾配降下 (rgrad) アルゴリズムを含む多くの高速アルゴリズムがtt形式テンソル完全化のために提案されている。
しかし、これらのアルゴリズムの理論的保証は、TT形式分解における複雑で再帰的な代数演算のために、ほとんど欠落または準最適である。
さらに、TT形式テンソルを扱うアルゴリズムが実質的に異なるため、TuckerやCPといった他のフォーマットのテンソルに対して確立された既存の結果は適用できない。
本稿では, TT形式テンソル完備化のためのRGradアルゴリズムの収束に関する理論的な最初の保証を, ほぼ最適なサンプルサイズ条件下で提供する。
RGradアルゴリズムは、リコンディショニングを必要とせずにテンソル条件数のない一定の収縮率で線形収束する。
また,同様のサンプルサイズ条件下で温かい初期化を実現するために,逐次2次モーメント法と呼ばれる新しい手法を提案する。
副産物として, 行列完全化のためのRGradアルゴリズムの先行研究を改良した。
数値実験により理論的な発見を確認し,tt形式分解による計算速度向上を示す。 The tensor train (TT) format enjoys appealing advantages in handling structural high-order tensors. The recent decade has witnessed the wide applications of TT-format tensors from diverse disciplines, among which tensor completion has drawn considerable attention. Numerous fast algorithms, including the Riemannian gradient descent (RGrad) algorithm, have been proposed for the TT-format tensor completion. However, the theoretical guarantees of these algorithms are largely missing or sub-optimal, partly due to the complicated and recursive algebraic operations in TT-format decomposition. Moreover, existing results established for the tensors of other formats, for example, Tucker and CP, are inapplicable because the algorithms treating TT-format tensors are substantially different and more involved. In this paper, we provide, to our best knowledge, the first theoretical guarantees of the convergence of RGrad algorithm for TT-format tensor completion, under a nearly optimal sample size condition. The RGrad algorithm converges linearly with a constant contraction rate that is free of tensor condition number without the necessity of re-conditioning. We also propose a novel approach, referred to as the sequential second-order moment method, to attain a warm initialization under a similar sample size requirement. As a byproduct, our result even significantly refines the prior investigation of RGrad algorithm for matrix completion. Numerical experiments confirm our theoretical discovery and showcase the computational speedup gained by the TT-format decomposition. | 翻訳日:2021-08-30 17:50:12 公開日:2021-08-27 |
# (参考訳) Pseudo-labeling を用いた低リソースコード混合ドラヴィダ言語における攻撃言語同定 Offensive Language Identification in Low-resourced Code-mixed Dravidian languages using Pseudo-labeling ( http://arxiv.org/abs/2108.12177v1 ) ライセンス: CC BY 4.0 | Adeep Hande, Karthik Puranik, Konthala Yasaswini, Ruba Priyadharshini, Sajeetha Thavareesan, Anbukkarasi Sampath, Kogilavani Shanmugavadivel, Durairaj Thenmozhi, Bharathi Raja Chakravarthi | (参考訳) ソーシャルメディアは、コミュニケーションとデジタルマーケティングの主要なハブとなっている。
これらのプラットフォームは、テキスト、画像、ビデオにおける思考や事実の無料表示を可能にするため、個人やグループを攻撃的なコンテンツから保護するために、それらをスクリーニングする必要がある。
我々の研究は、タミル語、カナダ語、マラヤラム語のドラヴィダ語で、コードミックスされたソーシャルメディアコメント/ポストを分類することを目的としています。
データセット上で擬似ラベルを生成することにより,攻撃的言語識別を改善する。
カスタムデータセットは、コードミキシングされたテキストをカナダ語、マラヤラム語、タミル語の各ドラヴィダ語に翻訳し、翻訳されたデータセットの擬似ラベルを生成する。
2つのデータセットは、生成された擬似ラベルを使って組み合わせられ、CMTRAと呼ばれるカスタムデータセットを生成する。
Dravidian言語はリソース不足のため、我々のアプローチは言語モデルのトレーニングデータの量を増やします。
新たに構築したデータセット上で,最近の事前学習言語モデルを微調整する。
事前訓練された言語埋め込みを抽出し、繰り返しニューラルネットワークに渡す。
カスタムデータセット上の微調整 ULMFiT は、3つの言語のコード混合テストセット上で最高の結果が得られることを観察する。
提案手法は,マラヤラム・イングリッシュとカナダ・イングリッシュのコード混合試験セットでそれぞれ0.9624と0.7306の競合重み付きF1スコアをそれぞれ獲得し,重み付きF1スコアの0.7934を達成した。 Social media has effectively become the prime hub of communication and digital marketing. As these platforms enable the free manifestation of thoughts and facts in text, images and video, there is an extensive need to screen them to protect individuals and groups from offensive content targeted at them. Our work intends to classify codemixed social media comments/posts in the Dravidian languages of Tamil, Kannada, and Malayalam. We intend to improve offensive language identification by generating pseudo-labels on the dataset. A custom dataset is constructed by transliterating all the code-mixed texts into the respective Dravidian language, either Kannada, Malayalam, or Tamil and then generating pseudo-labels for the transliterated dataset. The two datasets are combined using the generated pseudo-labels to create a custom dataset called CMTRA. As Dravidian languages are under-resourced, our approach increases the amount of training data for the language models. We fine-tune several recent pretrained language models on the newly constructed dataset. We extract the pretrained language embeddings and pass them onto recurrent neural networks. We observe that fine-tuning ULMFiT on the custom dataset yields the best results on the code-mixed test sets of all three languages. Our approach yields the best results among the benchmarked models on Tamil-English, achieving a weighted F1-Score of 0.7934 while scoring competitive weighted F1-Scores of 0.9624 and 0.7306 on the code-mixed test sets of Malayalam-English and Kannada-English, respectively. | 翻訳日:2021-08-30 17:48:58 公開日:2021-08-27 |
# (参考訳) GLocal-K:Recommenderシステムのためのグローバルカーネルとローカルカーネル GLocal-K: Global and Local Kernels for Recommender Systems ( http://arxiv.org/abs/2108.12184v1 ) ライセンス: CC BY 4.0 | Soyeon Caren Han, Taejun Lim, Siqu Long, Bernd Burgstaller, Josiah Poon | (参考訳) レコメンダシステムは、通常、高次元のスパースユーザ-イット行列で動作する。
マトリックスの完成は、何千ものアイテムの小さなサブセットを見た何百万もの他のユーザーに基づいて、興味を予測するための非常に難しいタスクです。
本稿では,高次元スパースなユーザ・イット・マトリックスを少数の重要な特徴を持つ低次元空間に一般化し,表現することを目的とした,glocal-kと呼ばれるグローバル局所カーネルベースのマトリックス補完フレームワークを提案する。
我々のGLocal-Kは2つの主要な段階に分けられる。
まず,局所的なカーネル化重み行列を用いたオートエンコーダを事前学習し,これを2d-RBFカーネルを用いて一空間から特徴空間に変換する。
そして、予め訓練されたオートエンコーダは、各アイテムの特性をキャプチャする畳み込みベースのグローバルカーネルによって生成される格付け行列で微調整される。
当社のglocal-kモデルは,ユーザ項目のレーティングマトリックスのみを含む極端に低リソースな設定で,サイド情報を持たない。
我々のモデルは、ML-100K、ML-1M、Doubanの3つの協調フィルタリングベンチマークで最先端のベースラインを上回っている。 Recommender systems typically operate on high-dimensional sparse user-item matrices. Matrix completion is a very challenging task to predict one's interest based on millions of other users having each seen a small subset of thousands of items. We propose a Global-Local Kernel-based matrix completion framework, named GLocal-K, that aims to generalise and represent a high-dimensional sparse user-item matrix entry into a low dimensional space with a small number of important features. Our GLocal-K can be divided into two major stages. First, we pre-train an auto encoder with the local kernelised weight matrix, which transforms the data from one space into the feature space by using a 2d-RBF kernel. Then, the pre-trained auto encoder is fine-tuned with the rating matrix, produced by a convolution-based global kernel, which captures the characteristics of each item. We apply our GLocal-K model under the extreme low-resource setting, which includes only a user-item rating matrix, with no side information. Our model outperforms the state-of-the-art baselines on three collaborative filtering benchmarks: ML-100K, ML-1M, and Douban. | 翻訳日:2021-08-30 17:00:55 公開日:2021-08-27 |
# (参考訳) バイオメディカルおよびCOVID-19問題に対する理想的な回答を見つけるための質問文抽出要約 Query-Focused Extractive Summarisation for Finding Ideal Answers to Biomedical and COVID-19 Questions ( http://arxiv.org/abs/2108.12189v1 ) ライセンス: CC BY 4.0 | Diego Moll\'a (1 and 2), Urvashi Khanna (1), Dima Galat (1), Vincent Nguyen (2 and 3) Maciej Rybinski (3) ( (1) Macquarie University, (2) CSIRO Data61, (3) Australian National University) | (参考訳) 本稿では,マッコーリー大学のBioASQ Synergy Taskへの参加とBioASQ9bのフェーズBについて述べる。
これらの課題のそれぞれにおいて,医療質問に対する理想的な回答を得るために,問合せに焦点をあてた抽出要約の利用に焦点を当てた。
synergyタスクは、新型コロナウイルス(covid-19)に関するエンドツーエンドの質問応答タスクであり、システムは、特定の質問に対して関連するドキュメント、スニペット、回答を返す必要がある。
学習データがないことを考慮し,bioasq8bトレーニングデータセットで学習したクエリ中心の要約システムを用いて,文書とスニペットを取得する手法を実験した。
システムによって回収された文書やスニペットの質が低かったことを踏まえ,回答の質は適度に良好であった。
BioASQ9bタスクのフェーズBでは、関連するドキュメントとスニペットがテストデータにすでに含まれていた。
本システムでは,スニペットを候補文に分割し,文分類設定の下でBERT変種を用いた。
システムは,質問文と候補文を入力として使用し,その候補文が理想的な回答の一部である可能性を予測する訓練を行った。
ランは、BioASQ9bの全てのバッチに対する全ての参加者の最高のROUGE-F1の結果を得た。
このことは、分類設定でBERTを使用することが理想的な答えを特定するための非常に強力なベースラインであることを示している。 This paper presents Macquarie University's participation to the BioASQ Synergy Task, and BioASQ9b Phase B. In each of these tasks, our participation focused on the use of query-focused extractive summarisation to obtain the ideal answers to medical questions. The Synergy Task is an end-to-end question answering task on COVID-19 where systems are required to return relevant documents, snippets, and answers to a given question. Given the absence of training data, we used a query-focused summarisation system that was trained with the BioASQ8b training data set and we experimented with methods to retrieve the documents and snippets. Considering the poor quality of the documents and snippets retrieved by our system, we observed reasonably good quality in the answers returned. For phase B of the BioASQ9b task, the relevant documents and snippets were already included in the test data. Our system split the snippets into candidate sentences and used BERT variants under a sentence classification setup. The system used the question and candidate sentence as input and was trained to predict the likelihood of the candidate sentence being part of the ideal answer. The runs obtained either the best or second best ROUGE-F1 results of all participants to all batches of BioASQ9b. This shows that using BERT in a classification setup is a very strong baseline for the identification of ideal answers. | 翻訳日:2021-08-30 16:52:43 公開日:2021-08-27 |
# (参考訳) 論理抽出による翻訳誤り検出 Translation Error Detection as Rationale Extraction ( http://arxiv.org/abs/2108.12197v1 ) ライセンス: CC BY 4.0 | Marina Fomicheva, Lucia Specia, Nikolaos Aletras | (参考訳) 多言語事前学習表現に基づく最近の品質推定(QE)モデルは、翻訳文の全体的な品質を予測する際に非常に競争力のある結果を得た。
翻訳エラー、すなわち、予測する。
どの単語が間違っているかを正確に検出することは、特に限られたトレーニングデータで、より困難な作業である。
我々は、成功したqeモデルは、人間と異なり、翻訳エラーに依存し、文全体の品質を予測すると仮定する。
モデル予測を説明するために、入力に関連点を割り当てる一連の特徴属性法を探索することにより、最先端の文レベルQEモデルの振る舞いを調べ、その説明を示す。
これらのモデルから抽出された論理は、翻訳エラーの検出に使用できる。
そこで, (i) 単語レベルQEの新しい半教師付き手法を導入し, (ii) 特徴属性の妥当性を評価するための新しいベンチマークとしてQEタスクを提案する。
モデルの説明がいかに人間に解釈されるか Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results when predicting the overall quality of translated sentences. Predicting translation errors, i.e. detecting specifically which words are incorrect, is a more challenging task, especially with limited amounts of training data. We hypothesize that, not unlike humans, successful QE models rely on translation errors to predict overall sentence quality. By exploring a set of feature attribution methods that assign relevance scores to the inputs to explain model predictions, we study the behaviour of state-of-the-art sentence-level QE models and show that explanations (i.e. rationales) extracted from these models can indeed be used to detect translation errors. We therefore (i) introduce a novel semi-supervised method for word-level QE and (ii) propose to use the QE task as a new benchmark for evaluating the plausibility of feature attribution, i.e. how interpretable model explanations are to humans. | 翻訳日:2021-08-30 16:40:15 公開日:2021-08-27 |
# (参考訳) ProtoInfoMax: ドメイン外検出のための相互情報最大化を備えたプロトタイプネットワーク ProtoInfoMax: Prototypical Networks with Mutual Information Maximization for Out-of-Domain Detection ( http://arxiv.org/abs/2108.12229v1 ) ライセンス: CC BY 4.0 | Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy | (参考訳) OOD(Out-of-Domain)インプットを検出する能力は、OODインプットがサポートされていないため、多くの現実世界のNLPアプリケーションにおいて重要な要件となっている。
しかし、OODトレーニングデータがゼロである現実的なシナリオでは、現在のアルゴリズムがそのような問題に確実に対処できるかどうか、実証的な疑問が残る。
本研究では,プロトタイプネットワークを拡張し,相互情報最大化(infomax)目標を用いて,ドメイン内(id)文とオード文を同時に処理する新しいアーキテクチャprotoinfomaxを提案する。
実験の結果,本手法はテキスト分類の低リソース設定におけるOOD検出性能を最大20%向上させることができることがわかった。
また、ProtoInfoMaxは、ニューラルネットワークの一般的な過信エラーの傾向が低く、より信頼性の高いIDとOOD予測結果をもたらすことを示す。 The ability to detect Out-of-Domain (OOD) inputs has been a critical requirement in many real-world NLP applications since the inclusion of unsupported OOD inputs may lead to catastrophic failure of systems. However, it remains an empirical question whether current algorithms can tackle such problem reliably in a realistic scenario where zero OOD training data is available. In this study, we propose ProtoInfoMax, a new architecture that extends Prototypical Networks to simultaneously process In-Domain (ID) and OOD sentences via Mutual Information Maximization (InfoMax) objective. Experimental results show that our proposed method can substantially improve performance up to 20% for OOD detection in low resource settings of text classification. We also show that ProtoInfoMax is less prone to typical over-confidence Error of Neural Networks, leading to more reliable ID and OOD prediction outcomes. | 翻訳日:2021-08-30 16:27:10 公開日:2021-08-27 |
# (参考訳) 時間的)分布記述論理のための幾何学的モデル Geometric Models for (Temporally) Attributed Description Logics ( http://arxiv.org/abs/2108.12239v1 ) ライセンス: CC BY 4.0 | Camille Bourgaux, Ana Ozaki, Jeff Z. Pan | (参考訳) 存在論的知識を捉えうる知識グラフ埋め込みの探索において、存在規則の幾何学的モデルが最近導入された。
凸幾何領域はいわゆる準連鎖規則を捉えることが示されている。
帰結記述論理(dl)は、dl言語と知識グラフの間のギャップを埋めるために定義されており、その事実は、推論のために考慮される必要がある様々なアノテーションを伴うことが多い。
特に、時間的属性のDLは、意味論が時間的推論を許容する特定の属性によって富む。
本稿では,dl-liteファミリーのホルン方言の帰属的バージョンに着目し,知識グラフのための有望なツールである幾何モデルと(一時的)帰属dlsを考察する。
まず幾何学的モデルの定義を帰結したdlsに適用し、すべての満足できるオントロジーが凸幾何学的モデルを持つことを示す。
第2の貢献は、時間的属性の影響についての研究です。
時間的特性を持つDLは一般に凸幾何学モデルを持たないが,時間的属性の使用に制限を加えることで幾何的満足度を回復できることを示す。 In the search for knowledge graph embeddings that could capture ontological knowledge, geometric models of existential rules have been recently introduced. It has been shown that convex geometric regions capture the so-called quasi-chained rules. Attributed description logics (DL) have been defined to bridge the gap between DL languages and knowledge graphs, whose facts often come with various kinds of annotations that may need to be taken into account for reasoning. In particular, temporally attributed DLs are enriched by specific attributes whose semantics allows for some temporal reasoning. Considering that geometric models and (temporally) attributed DLs are promising tools designed for knowledge graphs, this paper investigates their compatibility, focusing on the attributed version of a Horn dialect of the DL-Lite family. We first adapt the definition of geometric models to attributed DLs and show that every satisfiable ontology has a convex geometric model. Our second contribution is a study of the impact of temporal attributes. We show that a temporally attributed DL may not have a convex geometric model in general but we can recover geometric satisfiability by imposing some restrictions on the use of the temporal attributes. | 翻訳日:2021-08-30 16:13:22 公開日:2021-08-27 |
# (参考訳) 深層学習による音楽作曲についての一考察 Music Composition with Deep Learning: A Review ( http://arxiv.org/abs/2108.12290v1 ) ライセンス: CC BY 4.0 | Carlos Hernandez-Olivan, Jose R. Beltran | (参考訳) 作曲のような複雑な芸術作品を生成するには、音楽の階層構造に関連する様々な要因に依存する真の創造性を示す必要がある。
音楽生成はアルゴリズム的手法で行われており、近年はコンピュータビジョンなどの他の分野で使われているディープラーニングモデルと対立している。
本稿では,AIに基づく楽曲合成モデルと人間の楽曲合成と創造性プロセスの既存の関係について考察する。
本稿では,最近の音楽合成の深層学習モデルの概要を述べるとともに,理論的な観点から,これらのモデルと作曲過程を比較した。
我々は、AIと人間の作曲プロセスの類似性や創造性を備えた音楽を生成するために、現在のディープラーニングモデルの能力を分析することで、このタスクに最も関係のあるオープンな疑問に答えようとしている。 Generating a complex work of art such as a musical composition requires exhibiting true creativity that depends on a variety of factors that are related to the hierarchy of musical language. Music generation have been faced with Algorithmic methods and recently, with Deep Learning models that are being used in other fields such as Computer Vision. In this paper we want to put into context the existing relationships between AI-based music composition models and human musical composition and creativity processes. We give an overview of the recent Deep Learning models for music composition and we compare these models to the music composition process from a theoretical point of view. We have tried to answer some of the most relevant open questions for this task by analyzing the ability of current Deep Learning models to generate music with creativity or the similarity between AI and human composition processes, among others. | 翻訳日:2021-08-30 15:38:59 公開日:2021-08-27 |
# (参考訳) 動的分布適応と多様体正規化を用いた教師付き異種転送学習の枠組み A Framework for Supervised Heterogeneous Transfer Learning using Dynamic Distribution Adaptation and Manifold Regularization ( http://arxiv.org/abs/2108.12293v1 ) ライセンス: CC BY 4.0 | Md Geaur Rahman and Md Zahidul Islam | (参考訳) Transfer Learningは、ソースドメインから知識を転送することで、ターゲットドメインの分類器を学習することを目的としている。
しかし、特徴の相違と分布のばらつきという2つの主要な問題により、転送学習は実際には非常に難しい問題となる。
本稿では,多くのラベル付きレコードを持つソースドメインから知識を転送することで,ラベル付きトレーニングレコードが少ないターゲットドメインの分類器を構築するTLFというフレームワークを提案する。
既存のメソッドは1つの問題に集中し、もう1つの課題を次の作業に残すことが多いが、TLFは両方の問題を同時に扱うことができる。
TLFでは、ドメインをブリッジするピボットとして機能する共有ラベル分布を識別することで、特徴の相違を緩和する。
我々は、構造リスク関数、領域間の結合分布、および境界分布に基づく多様体の整合性を同時に最適化することにより、分布のばらつきを処理する。
さらに、多様体の整合性のために、k の値が TLF で自動的に決定されるレコードの k 近傍を同定することにより、その固有性を利用する。
さらに、負の転送が望まれないため、知識伝達中にソースピボットに属するソースレコードのみを考慮する。
TLFを利用可能な7つの自然データセット上で評価し、TLFの性能と11の最先端技術の性能を比較した。
また,困難状況下でのTLFの有効性についても検討した。
統計的手話検査やネメニイテスト分析を含む実験結果から,提案手法が最先端技術よりも優れていることが示唆された。 Transfer learning aims to learn classifiers for a target domain by transferring knowledge from a source domain. However, due to two main issues: feature discrepancy and distribution divergence, transfer learning can be a very difficult problem in practice. In this paper, we present a framework called TLF that builds a classifier for the target domain having only few labeled training records by transferring knowledge from the source domain having many labeled records. While existing methods often focus on one issue and leave the other one for the further work, TLF is capable of handling both issues simultaneously. In TLF, we alleviate feature discrepancy by identifying shared label distributions that act as the pivots to bridge the domains. We handle distribution divergence by simultaneously optimizing the structural risk functional, joint distributions between domains, and the manifold consistency underlying marginal distributions. Moreover, for the manifold consistency we exploit its intrinsic properties by identifying k nearest neighbors of a record, where the value of k is determined automatically in TLF. Furthermore, since negative transfer is not desired, we consider only the source records that are belonging to the source pivots during the knowledge transfer. We evaluate TLF on seven publicly available natural datasets and compare the performance of TLF against the performance of eleven state-of-the-art techniques. We also evaluate the effectiveness of TLF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques. | 翻訳日:2021-08-30 15:13:47 公開日:2021-08-27 |
# (参考訳) contrastive mixup: 表ドメインのための自己教師あり学習 Contrastive Mixup: Self- and Semi-Supervised learning for Tabular Domain ( http://arxiv.org/abs/2108.12296v1 ) ライセンス: CC BY 4.0 | Sajad Darabi, Shayan Fazeli, Ali Pazoki, Sriram Sankararaman, Majid Sarrafzadeh | (参考訳) 近年,画像領域とテキスト領域における教師なし手法と教師なし手法のギャップを埋める研究が進んでいる。
これらのメソッドは、表ドメインに直接適応できないドメイン固有の拡張に依存している。
代わりに、表データのための半教師付き学習フレームワークであるContrastive Mixupを導入し、限られた注釈付きデータ設定でその効果を実証する。
提案手法は, サンプルを低次元の潜在空間にマッピングすることで, 多様体仮定の下でのミックスアップに基づく拡張を活用し, 同じラベル付きクラス内で高い類似性を持つように補間標本を奨励する。
ラベルのないサンプルは、コントラスト損失項で使用できる類似および異質なペアの組をさらに豊かにするために、トランスダクティブラベル伝播法によって追加的に使用される。
提案手法が公的な表表データセットと実世界の臨床データセットに与える影響を実証する。 Recent literature in self-supervised has demonstrated significant progress in closing the gap between supervised and unsupervised methods in the image and text domains. These methods rely on domain-specific augmentations that are not directly amenable to the tabular domain. Instead, we introduce Contrastive Mixup, a semi-supervised learning framework for tabular data and demonstrate its effectiveness in limited annotated data settings. Our proposed method leverages Mixup-based augmentation under the manifold assumption by mapping samples to a low dimensional latent space and encourage interpolated samples to have high a similarity within the same labeled class. Unlabeled samples are additionally employed via a transductive label propagation method to further enrich the set of similar and dissimilar pairs that can be used in the contrastive loss term. We demonstrate the effectiveness of the proposed framework on public tabular datasets and real-world clinical datasets. | 翻訳日:2021-08-30 15:12:34 公開日:2021-08-27 |
# (参考訳) 建築エネルギーシミュレーションにおける分類と特徴選択の適用 Application of Classification and Feature Selection in Building Energy Simulations ( http://arxiv.org/abs/2108.12363v1 ) ライセンス: CC BY 4.0 | Fatemeh Shahsavari, Zohreh Shaghaghian | (参考訳) エネルギーパフォーマンスの構築は、パフォーマンスベースの設計決定における重要な特徴の1つです。
建築用封筒材は、建築エネルギー性能向上に重要な役割を果たす。
建築材料の熱特性は、建物エンベロープを通した熱伝達のレベルを決定するため、建物の年次熱エネルギー性能は決定される。
本研究は, 材料熱特性が建築熱負荷に及ぼす影響について, 線形判別分析 (LDA) 法を適用した。
主成分分析(PCA)と排他的特徴選択(EFS)の2つの手法が特徴選択に適用されている。
仮説設計のシナリオは、カリフォルニア州ロサンゼルスのオフィスビルに6つの代替素材で開発されている。
最適設計代替案はLDA結果に基づいて選択され、PCA法とEFS法に基づいてキー入力パラメータが決定される。
PCAの結果, 熱伝導率, 密度, 比熱容量, 厚さの4つのパラメータが, 建築熱挙動および熱エネルギー消費の面で最も重要な特徴であることが確認された。
この結果は、構築エネルギーシミュレーションツールの大部分の仮定と非常によく一致する。 Building energy performance is one of the key features in performance-based building design decision making. Building envelope materials can play a key role in improving building energy performance. The thermal properties of building materials determine the level of heat transfer through building envelope, thus the annual thermal energy performance of the building. This research applies the Linear Discriminant Analysis (LDA) method to study the effects of materials' thermal properties on building thermal loads. Two approaches are adopted for feature selection including the Principal Component Analysis (PCA) and the Exhaustive Feature Selection (EFS). A hypothetical design scenario is developed with six material alternatives for an office building in Los Angeles, California. The best design alternative is selected based on the LDA results and the key input parameters are determined based on the PCA and EFS methods. The PCA results confirm that among all thermal properties of the materials, the four parameters including thermal conductivity, density, specific heat capacity, and thickness are the most critical features, in terms of building thermal behavior and thermal energy consumption. This result matches quite well with the assumptions of most of the building energy simulation tools. | 翻訳日:2021-08-30 14:57:54 公開日:2021-08-27 |
# (参考訳) ISNet:セマンティックセグメンテーションのための画像レベルと意味レベルコンテキストの統合 ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation ( http://arxiv.org/abs/2108.12382v1 ) ライセンス: CC BY 4.0 | Zhenchao Jin, Bin Liu, Qi Chu, Nenghai Yu | (参考訳) 共起型視覚パターンは、コンテキスト情報の集約を共通のパラダイムとし、セマンティックイメージセグメンテーションのためのピクセル表現を強化する。
既存のアプローチでは、画像全体、すなわち画像レベルのコンテキスト情報を集約する観点から、コンテキストのモデリングに焦点を当てている。
これらの手法は印象的ではあるが、同じカテゴリのピクセル表現、すなわち意味レベルの文脈情報の重要性を弱める。
そこで本稿では,画像レベルと意味レベルのコンテキスト情報をそれぞれ集約することにより,画素表現の強化を提案する。
まず、画像レベルコンテキストモジュールは、画像内の各ピクセルのコンテキスト情報をキャプチャするように設計されている。
第2に,各画素毎に同じカテゴリの表現を集約し,各カテゴリ領域を接地木分割の監督の下で学習する。
第3に,各画素表現と画像レベルの文脈情報,意味レベルの文脈情報との類似性を計算する。
最後に、画像レベルのコンテキスト情報と意味レベルのコンテキスト情報の両方を重み付けし、重み付けとして類似度を持たせてピクセル表現を増強する。
画像レベルのコンテキストとセマンティックレベルのコンテキストを統合することで,ade20k,lip,cocostuff,cityscapesの4つのベンチマークにおいて,最先端の精度を報告できる。 Co-occurrent visual pattern makes aggregating contextual information a common paradigm to enhance the pixel representation for semantic image segmentation. The existing approaches focus on modeling the context from the perspective of the whole image, i.e., aggregating the image-level contextual information. Despite impressive, these methods weaken the significance of the pixel representations of the same category, i.e., the semantic-level contextual information. To address this, this paper proposes to augment the pixel representations by aggregating the image-level and semantic-level contextual information, respectively. First, an image-level context module is designed to capture the contextual information for each pixel in the whole image. Second, we aggregate the representations of the same category for each pixel where the category regions are learned under the supervision of the ground-truth segmentation. Third, we compute the similarities between each pixel representation and the image-level contextual information, the semantic-level contextual information, respectively. At last, a pixel representation is augmented by weighted aggregating both the image-level contextual information and the semantic-level contextual information with the similarities as the weights. Integrating the image-level and semantic-level context allows this paper to report state-of-the-art accuracy on four benchmarks, i.e., ADE20K, LIP, COCOStuff and Cityscapes. | 翻訳日:2021-08-30 14:51:54 公開日:2021-08-27 |
# DomiKnowS:ディープラーニングにおけるシンボリックドメイン知識の統合のためのライブラリ DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep Learning ( http://arxiv.org/abs/2108.12370v1 ) ライセンス: Link先を確認 | Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar, Elaheh Raisi, and Parisa Kordjamshidi | (参考訳) ディープラーニングアーキテクチャにおけるドメイン知識の統合のためのライブラリを実演する。
このライブラリを使用すると、データの構造はグラフ宣言を通じて象徴的に表現され、出力や潜在変数に対する論理的な制約を深層モデルにシームレスに追加することができる。
ドメイン知識は明確に定義することができ、低データ体制の性能と一般化性に加えて、モデルの説明可能性を改善することができる。
このようなシンボリックモデルとサブシンボリックモデルを統合するためのいくつかのアプローチが導入されたが、そのような統合を汎用的にプログラミングするためのライブラリは存在せず、基礎となる様々なアルゴリズムが利用できる。
本ライブラリは,学習アルゴリズムから知識表現を分離しつつ,学習段階と推論段階の両方の統合を簡略化することを目的としている。
様々なNLPベンチマークタスクを紹介します。
このフレームワークはgithubで公開されている(https://github.com/hlr/domiknows)。 We demonstrate a library for the integration of domain knowledge in deep learning architectures. Using this library, the structure of the data is expressed symbolically via graph declarations and the logical constraints over outputs or latent variables can be seamlessly added to the deep models. The domain knowledge can be defined explicitly, which improves the models' explainability in addition to the performance and generalizability in the low-data regime. Several approaches for such an integration of symbolic and sub-symbolic models have been introduced; however, there is no library to facilitate the programming for such an integration in a generic way while various underlying algorithms can be used. Our library aims to simplify programming for such an integration in both training and inference phases while separating the knowledge representation from learning algorithms. We showcase various NLP benchmark tasks and beyond. The framework is publicly available at Github(https://github.com/HLR/DomiKnowS). | 翻訳日:2021-08-30 14:26:06 公開日:2021-08-27 |
# 自動運転車の歩行者検出・追跡フレームワーク:カメラとLiDARデータの効率的な融合 A Pedestrian Detection and Tracking Framework for Autonomous Cars: Efficient Fusion of Camera and LiDAR Data ( http://arxiv.org/abs/2108.12375v1 ) ライセンス: Link先を確認 | Muhammad Mobaidul Islam, Abdullah Al Redwan Newaz, and Ali Karimoddini | (参考訳) 本稿では,カメラとLiDARセンサデータを用いた歩行者検出・追跡手法を提案する。
自動運転シナリオに関連する課題に対処するために,トラッキングと検出の統合フレームワークが提案されている。
検出フェーズは、LiDARストリームを計算的に抽出可能な深度画像に変換し、RGBと深度画像の両方の歩行者候補を特定するディープニューラルネットワークを開発する。
正確な情報を提供するため、カルマンフィルタを用いたマルチモーダルセンサ情報を用いて検出フェーズをさらに強化する。
トラッキングフェーズは、Kalmanフィルタ予測と、シーン内の複数の歩行者を追跡するための光フローアルゴリズムの組み合わせである。
我々は,我々のフレームワークを実際の運転データセット上で評価する。
実験の結果, 提案手法は, 歩行者検出のみを用いたベースライン法に比べて有意な性能改善が得られた。 This paper presents a novel method for pedestrian detection and tracking by fusing camera and LiDAR sensor data. To deal with the challenges associated with the autonomous driving scenarios, an integrated tracking and detection framework is proposed. The detection phase is performed by converting LiDAR streams to computationally tractable depth images, and then, a deep neural network is developed to identify pedestrian candidates both in RGB and depth images. To provide accurate information, the detection phase is further enhanced by fusing multi-modal sensor information using the Kalman filter. The tracking phase is a combination of the Kalman filter prediction and an optical flow algorithm to track multiple pedestrians in a scene. We evaluate our framework on a real public driving dataset. Experimental results demonstrate that the proposed method achieves significant performance improvement over a baseline method that solely uses image-based pedestrian detection. | 翻訳日:2021-08-30 14:25:11 公開日:2021-08-27 |
# 入力摂動に対するニューラルネットワークモデルのロバスト性の評価 Evaluating the Robustness of Neural Language Models to Input Perturbations ( http://arxiv.org/abs/2108.12237v1 ) ライセンス: Link先を確認 | Milad Moradi, Matthias Samwald | (参考訳) 高性能ニューラルネットワークモデルは、幅広い自然言語処理(NLP)タスクについて最先端の結果を得た。
しかし、一般的なベンチマークデータセットの結果は、ノイズの多い現実世界のデータに適用した場合、モデルの信頼性と堅牢性を反映しないことが多い。
本研究では,入力テキストがNLPシステムで訓練されたデータ配信とわずかにノイズがあるような現実的なシナリオをシミュレートするために,文字レベルおよび単語レベルの摂動法を設計,実装する。
異なるNLPタスクに対する包括的実験を行い、入力摂動の異なるタイプの処理におけるBERT、XLNet、RoBERTa、ELMoといった高性能言語モデルの能力について検討する。
その結果, 言語モデルは入力摂動に敏感であり, 小さな変化が生じても性能が低下することが示唆された。
モデルをさらに改善し、現在のベンチマークがモデル堅牢性を十分に反映していない点を強調します。
摂動入力の評価は、NLPシステムの堅牢性をより現実的に理解するために、広く使われているベンチマークを日常的に補完するべきであると論じる。 High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks. However, results for common benchmark datasets often do not reflect model reliability and robustness when applied to noisy, real-world data. In this study, we design and implement various types of character-level and word-level perturbation methods to simulate realistic scenarios in which input texts may be slightly noisy or different from the data distribution on which NLP systems were trained. Conducting comprehensive experiments on different NLP tasks, we investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations. The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced. We highlight that models need to be further improved and that current benchmarks are not reflecting model robustness well. We argue that evaluations on perturbed inputs should routinely complement widely-used benchmarks in order to yield a more realistic understanding of NLP systems robustness. | 翻訳日:2021-08-30 14:24:56 公開日:2021-08-27 |
# 深層学習モデルは臨床テキストのノイズに対して堅牢ではない Deep learning models are not robust against noise in clinical text ( http://arxiv.org/abs/2108.12242v1 ) ライセンス: Link先を確認 | Milad Moradi, Kathrin Blagec, Matthias Samwald | (参考訳) 人工知能(AI)システムは、人間の知性と専門知識を必要とする複雑なタスクを学習する能力によって、医療分野への関心が高まっている。
高性能自然言語処理(NLP)モデルを利用するAIシステムは、様々な臨床テキスト処理ベンチマークで最先端の結果を得た。
いくつかのタスクでは人間の精度よりも優れています。
しかし、このようなAIシステムの性能評価は、実際の状況においてこれらのシステムがいかに堅牢に動作できるかを適切に反映しない、キュレートされたクリーンなベンチマークデータセットの精度測定に限られている。
この課題に対処するために,臨床テキストデータにおける様々な種類のノイズや変動性をシミュレートする多種多様な摂動法を導入,実装する。
これらの摂動法によって生成される騒がしいサンプルは、しばしば人間が理解することができるが、aiシステムが誤った決定を下す可能性がある。
臨床テキスト処理タスクにおける広範囲な実験を行い,各種文字レベルおよび単語レベルのノイズに対する高性能NLPモデルのロバスト性を評価した。
その結果,NLPモデルの性能は,少量のノイズを含むと劣化することがわかった。
この研究は、臨床テキスト処理システムで使用されるAIモデルの脆弱性を明らかにするための重要なステップである。
提案手法は, 実環境において, ノイズの多いデータでNLPモデルがいかに頑健に動作できるかを評価するために, 性能評価試験に使用することができる。 Artificial Intelligence (AI) systems are attracting increasing interest in the medical domain due to their ability to learn complicated tasks that require human intelligence and expert knowledge. AI systems that utilize high-performance Natural Language Processing (NLP) models have achieved state-of-the-art results on a wide variety of clinical text processing benchmarks. They have even outperformed human accuracy on some tasks. However, performance evaluation of such AI systems have been limited to accuracy measures on curated and clean benchmark datasets that may not properly reflect how robustly these systems can operate in real-world situations. In order to address this challenge, we introduce and implement a wide variety of perturbation methods that simulate different types of noise and variability in clinical text data. While noisy samples produced by these perturbation methods can often be understood by humans, they may cause AI systems to make erroneous decisions. Conducting extensive experiments on several clinical text processing tasks, we evaluated the robustness of high-performance NLP models against various types of character-level and word-level noise. The results revealed that the NLP models performance degrades when the input contains small amounts of noise. This study is a significant step towards exposing vulnerabilities of AI models utilized in clinical text processing systems. The proposed perturbation methods can be used in performance evaluation tests to assess how robustly clinical NLP models can operate on noisy data, in real-world settings. | 翻訳日:2021-08-30 14:24:36 公開日:2021-08-27 |
# TE-YOLOF:血液細胞検出のためのタイニーで効率的なYOLOF TE-YOLOF: Tiny and efficient YOLOF for blood cell detection ( http://arxiv.org/abs/2108.12313v1 ) ライセンス: Link先を確認 | Fanxin Xu, Xiangkui Li, Hang Yang, Yali Wang, Wei Xiang | (参考訳) 顕微鏡画像における血液細胞検出は、医用画像処理研究の不可欠な分野である。
血液細胞の手動チェックに基づく疾患の検出は時間を要するため、深層畳み込みニューラルネットワークを用いた物体検出器を用いた血液細胞の検査は実現可能な解決策と考えられる。
本研究では, 赤血球, 白血球, 血小板などの血液細胞物体を検出するために, YOLOFに基づく物体検出法が提案されている。
この物体検出器はTE-YOLOF、Tiny、Efficient YOLOFと呼ばれ、拡張エンコーダを用いて単一レベルの特徴マップから情報を抽出するワンステージ検出器である。
効率性と柔軟性を向上させるため、提案したオブジェクト検出器のバックボーンとして、EfficientNet Convolutional Neural Networkが使用される。
さらに,ネットワークの性能向上とパラメータの最小化のために,奥行き分離可能な畳み込みを適用した。
また、マイシュ活性化関数を用いて精度を向上させる。
BCCDデータセットの大規模な実験は、既存の血液細胞検出研究よりも効率的である提案モデルの有効性を証明している。 Blood cell detection in microscopic images is an essential branch of medical image processing research. Since disease detection based on manual checking of blood cells is time-consuming and full of errors, testing of blood cells using object detectors with Deep Convolutional Neural Network can be regarded as a feasible solution. In this work, an object detector based on YOLOF has been proposed to detect blood cell objects such as red blood cells, white blood cells and platelets. This object detector is called TE-YOLOF, Tiny and Efficient YOLOF, and it is a One-Stage detector using dilated encoder to extract information from single-level feature maps. For increasing efficiency and flexibility, the EfficientNet Convolutional Neural Network is utilized as the backbone for the proposed object detector. Furthermore, the Depthwise Separable Convolution is applied to enhance the performance and minimize the parameters of the network. In addition, the Mish activation function is employed to increase the precision. Extensive experiments on the BCCD dataset prove the effectiveness of the proposed model, which is more efficient than other existing studies for blood cell detection. | 翻訳日:2021-08-30 14:24:10 公開日:2021-08-27 |
# CAPE: プライベート言語学習のためのコンテキスト対応プライベート埋め込み CAPE: Context-Aware Private Embeddings for Private Language Learning ( http://arxiv.org/abs/2108.12318v1 ) ライセンス: Link先を確認 | Richard Plant, Dimitra Gkatzia, Valerio Giuffrida | (参考訳) 深層学習に基づく言語モデルは、感情分析、トピックラベリング、意図分類など、多くのアプリケーションで最先端の結果を得た。
これらのモデルを用いたテキスト表現や埋め込みは、評判やプライバシーにリスクをもたらす可能性のある言語や文脈の手がかりから学習した個人識別可能な情報を符号化する可能性を示す。
これらの問題を解決するために、埋め込みのトレーニング中にプライバシを保存する新しいアプローチであるCAPE(Context-Aware Private Embeddings)を提案する。
テキスト表現のプライバシを維持するため、CAPEは差分プライバシーを通じて校正ノイズを適用し、機密情報を隠蔽しながらエンコードされたセマンティックリンクを保存する。
加えて、CAPEは個人変数を隠蔽する敵の訓練体制を採用している。
実験の結果,提案手法は単一の介入よりも情報漏洩を低減できることがわかった。 Deep learning-based language models have achieved state-of-the-art results in a number of applications including sentiment analysis, topic labelling, intent classification and others. Obtaining text representations or embeddings using these models presents the possibility of encoding personally identifiable information learned from language and context cues that may present a risk to reputation or privacy. To ameliorate these issues, we propose Context-Aware Private Embeddings (CAPE), a novel approach which preserves privacy during training of embeddings. To maintain the privacy of text representations, CAPE applies calibrated noise through differential privacy, preserving the encoded semantic links while obscuring sensitive information. In addition, CAPE employs an adversarial training regime that obscures identified private variables. Experimental results demonstrate that the proposed approach reduces private information leakage better than either single intervention. | 翻訳日:2021-08-30 14:23:35 公開日:2021-08-27 |
# YOLOv5とNon-Maximum Suppression Ensemblingを用いた高機能交通検出 Densely-Populated Traffic Detection using YOLOv5 and Non-Maximum Suppression Ensembling ( http://arxiv.org/abs/2108.12118v1 ) ライセンス: Link先を確認 | Raian Rahman, Zadid Bin Azad, Md. Bakhtiar Hasan | (参考訳) 車両物体検出は、インテリジェントな交通システムの中心である。
都市交通管理に欠かせない。
R-CNN、Fast R-CNN、Faster R-CNN、YOLOは初期の最先端モデルの一つである。
領域ベースCNN法は, リアルタイムにモデルを使用する非現実的な推論時間に問題がある。
一方YOLOは、グループに現れる小さな物体を検出するのに苦労している。
本稿では, YOLOv5を用いて, 密集した画像から車両物体を識別し, 分類する手法を提案する。
ヨロの欠点は4つの異なるモデルから解き明かされた。
提案モデルは,昼夜を問わず,道路の上側と横側の両方から撮影された画像に対して良好に機能する。
密集した車両画像を含むDhaka AIデータセットを用いて,提案モデルの性能を測定した。
実験の結果,我々のモデルは0.75秒の予測時間で0.458mAP@0.5を達成し,他の最先端モデルよりも高い性能を示した。
これにより,トラヒック制御やデータ収集に使用可能なリアルタイムトラヒック検出を,路上に実装することが可能となる。 Vehicular object detection is the heart of any intelligent traffic system. It is essential for urban traffic management. R-CNN, Fast R-CNN, Faster R-CNN and YOLO were some of the earlier state-of-the-art models. Region based CNN methods have the problem of higher inference time which makes it unrealistic to use the model in real-time. YOLO on the other hand struggles to detect small objects that appear in groups. In this paper, we propose a method that can locate and classify vehicular objects from a given densely crowded image using YOLOv5. The shortcoming of YOLO was solved my ensembling 4 different models. Our proposed model performs well on images taken from both top view and side view of the street in both day and night. The performance of our proposed model was measured on Dhaka AI dataset which contains densely crowded vehicular images. Our experiment shows that our model achieved mAP@0.5 of 0.458 with inference time of 0.75 sec which outperforms other state-of-the-art models on performance. Hence, the model can be implemented in the street for real-time traffic detection which can be used for traffic control and data collection. | 翻訳日:2021-08-30 14:23:19 公開日:2021-08-27 |
# ランダム有限集合における点パターン特徴のエネルギーを用いた欠陥の異常検出 Anomaly Detection of Defect using Energy of Point Pattern Features within Random Finite Set Framework ( http://arxiv.org/abs/2108.12159v1 ) ライセンス: Link先を確認 | Ammar Mansoor Kamoona, Amirali Khodadadian Gostar, Alireza Bab-Hadiashar, and Reza Hoseinnezhad | (参考訳) 本稿では,点パターンデータを用いた異常検出に基づく産業的欠陥検出のための効率的な手法を提案する。
最近の作品は、画像コンテンツを要約するために、機能抽出に \textit{global features} を使っている。
しかし、グローバルな特徴は照明や視点の変化に対して堅牢ではなく、製造業界で十分に活用される画像の幾何学的情報を記述していない。
まず,局所的/点的パターン特徴の伝達学習を用いて,これらの限界を克服し,画像領域の幾何学的情報を取得することを提案する。
我々はこれらの局所/点パターンをランダム有限集合(RFS)としてモデル化する。
さらに、異常スコアとして RFS の可能性に対して RFS エネルギーを提案する。
正規サンプルの点パターン特徴の類似度分布は多変量ガウスとしてモデル化されている。
提案した RFS エネルギーのパラメータ学習には重い計算は必要ない。
マルチオブジェクト欠陥検出データセットであるMVTec ADデータセットに対する提案手法の評価を行った。
実験の結果,提案手法は最先端手法と比較して優れた性能を示し,rfsエネルギは少数のショット学習環境において最先端技術を上回っていることがわかった。 In this paper, we propose an efficient approach for industrial defect detection that is modeled based on anomaly detection using point pattern data. Most recent works use \textit{global features} for feature extraction to summarize image content. However, global features are not robust against lighting and viewpoint changes and do not describe the image's geometrical information to be fully utilized in the manufacturing industry. To the best of our knowledge, we are the first to propose using transfer learning of local/point pattern features to overcome these limitations and capture geometrical information of the image regions. We model these local/point pattern features as a random finite set (RFS). In addition we propose RFS energy, in contrast to RFS likelihood as anomaly score. The similarity distribution of point pattern features of the normal sample has been modeled as a multivariate Gaussian. Parameters learning of the proposed RFS energy does not require any heavy computation. We evaluate the proposed approach on the MVTec AD dataset, a multi-object defect detection dataset. Experimental results show the outstanding performance of our proposed approach compared to the state-of-the-art methods, and the proposed RFS energy outperforms the state-of-the-art in the few shot learning settings. | 翻訳日:2021-08-30 14:23:02 公開日:2021-08-27 |
# LassoLayer: 1対1リンク切り替えによる非線形特徴選択 LassoLayer: Nonlinear Feature Selection by Switching One-to-one Links ( http://arxiv.org/abs/2108.12165v1 ) ライセンス: Link先を確認 | Akihito Sudo, Teng Teck Hou, Masaki Yamaguchi, Yoshinori Tone | (参考訳) より複雑な問題に対処したいという願望に加えて、機能選択方法の重要性も高まっている。
特徴選択方法はラッパー法、フィルタ法、埋め込み法に分類することができる。
ラッソは強力な組込み特徴選択法であり、多くの研究者の注目を集めている。
しかし、線形アプローチとして、ラッソの適用性は制限されている。
本研究では,L1最適化により1対1の接続とトレーニングを行うLassoLayerを提案する。
非線形特徴選択には、LassoMLP(LassoLayerを第一層とするネットワーク)を構築する。
どんなネットワーク構造にもLassoLayerを挿入できるので、機能選択が必要なタスクに適したニューラルネットワークの強度を利用することができます。
我々は,レグレッションと分類タスクによる特徴選択においてLassoMLPを評価する。
LassoMLPは、過剰適合に有害なかなりのノイズ要因を含む特徴を受信する。
MNISTデータセットを用いた実験では,LassoMLPが最先端の手法より優れていることを確認した。 Along with the desire to address more complex problems, feature selection methods have gained in importance. Feature selection methods can be classified into wrapper method, filter method, and embedded method. Being a powerful embedded feature selection method, Lasso has attracted the attention of many researchers. However, as a linear approach, the applicability of Lasso has been limited. In this work, we propose LassoLayer that is one-to-one connected and trained by L1 optimization, which work to drop out unnecessary units for prediction. For nonlinear feature selections, we build LassoMLP: the network equipped with LassoLayer as its first layer. Because we can insert LassoLayer in any network structure, it can harness the strength of neural network suitable for tasks where feature selection is needed. We evaluate LassoMLP in feature selection with regression and classification tasks. LassoMLP receives features including considerable numbers of noisy factors that is harmful for overfitting. In the experiments using MNIST dataset, we confirm that LassoMLP outperforms the state-of-the-art method. | 翻訳日:2021-08-30 14:22:44 公開日:2021-08-27 |
# LSTMに基づく音声認識モデルの4ビット量子化 4-bit Quantization of LSTM-based Speech Recognition Models ( http://arxiv.org/abs/2108.12074v1 ) ライセンス: Link先を確認 | Andrea Fasoli, Chia-Yu Chen, Mauricio Serrano, Xiao Sun, Naigang Wang, Swagath Venkataramani, George Saon, Xiaodong Cui, Brian Kingsbury, Wei Zhang, Zolt\'an T\"uske, Kailash Gopalakrishnan | (参考訳) 音声認識のための大型LSTMアーキテクチャ(ASR)の2つのファミリー(DBLSTM-HMM)とリカレントニューラルネットワーク-トランスデューサ(RNN-Ts)の重みとアクティベーションの積極的な低精度表現の影響について検討した。
4ビット整数表現を用いて、これらのモデルのLSTM部分に適用したna\\ive Quantizationアプローチにより、ワード誤り率(WER)が大幅に低下する。
一方,最小精度の損失は,量子化と初期化の適切な選択によって達成可能であることを示す。
特に,ネットワークの局所的特性に応じて量子化スキームをカスタマイズし,計算時間を制限しながら認識性能を向上させる。
NIST Hub5-2000 評価の Switchboard (SWB) および CallHome (CH) テストセット上で,本ソリューションを実証する。
300時間または2000時間のSWBデータをトレーニングしたDBLSTM-HMMは、それぞれ$<0.5%と$<1%の平均WER劣化を達成する。
より困難なRNN-Tモデルでは、量子化戦略は4ビット推論の劣化を1.3%に制限する。 We investigate the impact of aggressive low-precision representations of weights and activations in two families of large LSTM-based architectures for Automatic Speech Recognition (ASR): hybrid Deep Bidirectional LSTM - Hidden Markov Models (DBLSTM-HMMs) and Recurrent Neural Network - Transducers (RNN-Ts). Using a 4-bit integer representation, a na\"ive quantization approach applied to the LSTM portion of these models results in significant Word Error Rate (WER) degradation. On the other hand, we show that minimal accuracy loss is achievable with an appropriate choice of quantizers and initializations. In particular, we customize quantization schemes depending on the local properties of the network, improving recognition performance while limiting computational time. We demonstrate our solution on the Switchboard (SWB) and CallHome (CH) test sets of the NIST Hub5-2000 evaluation. DBLSTM-HMMs trained with 300 or 2000 hours of SWB data achieves $<$0.5% and $<$1% average WER degradation, respectively. On the more challenging RNN-T models, our quantization strategy limits degradation in 4-bit inference to 1.3%. | 翻訳日:2021-08-30 14:22:32 公開日:2021-08-27 |
# 航空交通における航空監視データによるコールサイン認識の改善 Improving callsign recognition with air-surveillance data in air-traffic communication ( http://arxiv.org/abs/2108.12156v1 ) ライセンス: Link先を確認 | Iuliia Nigmatulina, Rudolf Braun, Juan Zuluaga-Gomez, Petr Motlicek | (参考訳) 自動音声認識(asr)は、パイロットと航空管制官間の音声通信の補助として使用できる。
そのアプリケーションはタスクの複雑さを著しく低減し、送信された情報の信頼性を高めることができる。
エラーのリスクを最小限に抑えるためには、高い精度の予測が必要である。
特に、パイロットのナビゲートに使用されるコマンドやコールサインといった重要な情報を認識するには、高い精度が必要である。
以上より,コールサインを含む監視データは,発話毎に確率的なコールサインn-gramの重みが低減された場合に,発話中のコールサインの認識を大幅に改善できることを示す。
本稿では,(1)言語モデルレベル(g)でコールサイン重みを調整し,その後にオンザフライ構成の動的デコーダ,(2)従来のデコーダで生成された格子上にコールサイン情報を導入した場合の格子リコーダという2つのアプローチについて検討する。
コールサインn-gramと2つの手法を組み合わせることで、コールサイン認識精度が28.4%向上し、コールサイン認識のWERが74.2%向上した。 Automatic Speech Recognition (ASR) can be used as the assistance of speech communication between pilots and air-traffic controllers. Its application can significantly reduce the complexity of the task and increase the reliability of transmitted information. Evidently, high accuracy predictions are needed to minimize the risk of errors. Especially, high accuracy is required in recognition of key information, such as commands and callsigns, used to navigate pilots. Our results prove that the surveillance data containing callsigns can help to considerably improve the recognition of a callsign in an utterance when the weights of probable callsign n-grams are reduced per utterance. In this paper, we investigate two approaches: (1) G-boosting, when callsigns weights are adjusted at language model level (G) and followed by the dynamic decoder with an on-the-fly composition, and (2) lattice rescoring when callsign information is introduced on top of lattices generated using a conventional decoder. Boosting callsign n-grams with the combination of two methods allowed us to gain 28.4% of absolute improvement in callsign recognition accuracy and up to 74.2% of relative improvement in WER of callsign recognition. | 翻訳日:2021-08-30 14:22:11 公開日:2021-08-27 |
# atcoとパイロットasrの改善のための文法に基づく話者役割の同定 Grammar Based Identification Of Speaker Role For Improving ATCO And Pilot ASR ( http://arxiv.org/abs/2108.12175v1 ) ライセンス: Link先を確認 | Amrutha Prasad, Juan Zuluaga-Gomez, Petr Motlicek, Oliver Ohneiser, Hartmut Helmke, Saeed Sarfjoo, Iuliia Nigmatulina | (参考訳) 航空交通制御のための補助ベース音声認識(ABSR)は一般に、航空交通管制官(ATCO)とパイロットデータの両方をプールすることで訓練される。
実際には、パイロットデータの比率がATCOに比べて低いのに対して、標準的な通信言語は似ているという事実が動機となっている。
しかし、ATCOとパイロットのデータ不均衡と様々な音響条件のため、ASRの性能はパイロットよりもATCOにとってかなり良い。
本稿では,(1)ATCOとパイロットデータをASRの書き起こしを利用した自動手法で分割すること,(2)ATCOとパイロットASRを音響モデル(AM)トレーニングの2つのタスクとして考えることを提案する。
atcoとパイロットデータの話者役割分類では、シードモデルを用いて仮定されたasr転写物を生成し、その後、国際民間航空機関(icao)の定義した文法から抽出された知識に基づいて話者役割を分類する。
このアプローチは、ATCOとパイロットに対して平均話者ロール識別精度83%を提供する。
最後に、各タスクごとに個別にAMをトレーニングしたり、マルチタスクアプローチを使用すれば、このデータに適していることを示す。 Assistant Based Speech Recognition (ABSR) for air traffic control is generally trained by pooling both Air Traffic Controller (ATCO) and pilot data. In practice, this is motivated by the fact that the proportion of pilot data is lesser compared to ATCO while their standard language of communication is similar. However, due to data imbalance of ATCO and pilot and their varying acoustic conditions, the ASR performance is usually significantly better for ATCOs than pilots. In this paper, we propose to (1) split the ATCO and pilot data using an automatic approach exploiting ASR transcripts, and (2) consider ATCO and pilot ASR as two separate tasks for Acoustic Model (AM) training. For speaker role classification of ATCO and pilot data, a hypothesized ASR transcript is generated with a seed model, subsequently used to classify the speaker role based on the knowledge extracted from grammar defined by International Civil Aviation Organization (ICAO). This approach provides an average speaker role identification accuracy of 83% for ATCO and pilot. Finally, we show that training AMs separately for each task, or using a multitask approach is well suited for this data compared to AM trained by pooling all data. | 翻訳日:2021-08-30 14:21:50 公開日:2021-08-27 |
# Prover-Verifier Games による検証可能な回答の学習 Learning to Give Checkable Answers with Prover-Verifier Games ( http://arxiv.org/abs/2108.12099v1 ) ライセンス: Link先を確認 | Cem Anil, Guodong Zhang, Yuhuai Wu, Roger Grosse | (参考訳) 機械学習システムによってなされた決定をいつ信頼するかを知る能力は、そのパフォーマンスの驚異的な改善に遅れず、ハイシテイクなドメインでの適用性が制限されている。
Prover-Verifier Games (PVGs) は,学習エージェントが決定問題を検証可能な方法で解くことを奨励するゲーム理論フレームワークである。
pvgは2つの目標を持った学習者で構成される: 信頼できる検証者ネットワークは正しい答えを選択しようとするが、より強力だが信頼できない証明者ネットワークはその正確性に関係なく、特定の回答の検証者を説得しようとする。
目標は、このゲームから信頼できる正当化プロトコルが生まれることです。
我々は、同時かつ連続的なゲームを含むフレームワークの変種を分析し、その空間を、確実に所望の平衡を持つゲームのサブセットに絞り込む。
2つのアルゴリズムタスクのためのpvgのインスタンスを作成し、実際に検証者が信頼できない証明者から有用で信頼性の高い情報を受信できる堅牢な決定規則を学習することを示す。
重要なことは、検証者が凍結され、証明者のメッセージが直接最適化されて検証者を納得させる場合でも、プロトコルは依然として機能する。 Our ability to know when to trust the decisions made by machine learning systems has not kept up with the staggering improvements in their performance, limiting their applicability in high-stakes domains. We introduce Prover-Verifier Games (PVGs), a game-theoretic framework to encourage learning agents to solve decision problems in a verifiable manner. The PVG consists of two learners with competing objectives: a trusted verifier network tries to choose the correct answer, and a more powerful but untrusted prover network attempts to persuade the verifier of a particular answer, regardless of its correctness. The goal is for a reliable justification protocol to emerge from this game. We analyze variants of the framework, including simultaneous and sequential games, and narrow the space down to a subset of games which provably have the desired equilibria. We develop instantiations of the PVG for two algorithmic tasks, and show that in practice, the verifier learns a robust decision rule that is able to receive useful and reliable information from an untrusted prover. Importantly, the protocol still works even when the verifier is frozen and the prover's messages are directly optimized to convince the verifier. | 翻訳日:2021-08-30 14:21:29 公開日:2021-08-27 |
# 精密医療における未表現人口のターゲット:フェデレート・トランスファー学習アプローチ Targeting Underrepresented Populations in Precision Medicine: A Federated Transfer Learning Approach ( http://arxiv.org/abs/2108.12112v1 ) ライセンス: Link先を確認 | Sai Li, Tianxi Cai, Rui Duan | (参考訳) 大規模臨床・ゲノム研究におけるマイノリティと不利な人口の限られた表現は、精密医学研究を実践に翻訳する障壁となっている。
集団間の不均一性のため、リスク予測モデルがこれらの人口の過小評価されることが多く、したがって既知の健康格差をさらに悪化させる可能性がある。
本稿では,多種多様な医療機関からの異種データをフェデレート・トランスファー・ラーニング・アプローチにより統合する双方向データ統合戦略を提案する。
提案手法は,異なる集団のサンプルサイズが極めてバランスの取れない,困難な状況に対処できる。
提案手法は,参加サイト間で少数の通信しか行わず,個別レベルのデータが直接プールされるプール解析に匹敵する性能を実現することができる。
提案手法は,過疎人口における推定と予測精度を向上し,個体群間でのモデル性能の差を低減できることを示す。
理論解析により,推定精度がコミュニケーション予算,プライバシー制限,集団間の多様性にどのように影響するかが明らかになった。
数値実験により本手法の有効性と妥当性を実証し,AA群におけるII型糖尿病の発症リスク予測モデルを構築した多施設研究への実例を示した。 The limited representation of minorities and disadvantaged populations in large-scale clinical and genomics research has become a barrier to translating precision medicine research into practice. Due to heterogeneity across populations, risk prediction models are often found to be underperformed in these underrepresented populations, and therefore may further exacerbate known health disparities. In this paper, we propose a two-way data integration strategy that integrates heterogeneous data from diverse populations and from multiple healthcare institutions via a federated transfer learning approach. The proposed method can handle the challenging setting where sample sizes from different populations are highly unbalanced. With only a small number of communications across participating sites, the proposed method can achieve performance comparable to the pooled analysis where individual-level data are directly pooled together. We show that the proposed method improves the estimation and prediction accuracy in underrepresented populations, and reduces the gap of model performance across populations. Our theoretical analysis reveals how estimation accuracy is influenced by communication budgets, privacy restrictions, and heterogeneity across populations. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-center study, in which we construct polygenic risk prediction models for Type II diabetes in AA population. | 翻訳日:2021-08-30 14:20:49 公開日:2021-08-27 |
# 患者サブポピュレーションにおける最悪の予測モデル性能向上手法の比較 A comparison of approaches to improve worst-case predictive model performance over patient subpopulations ( http://arxiv.org/abs/2108.12250v1 ) ライセンス: Link先を確認 | Stephen R. Pfohl, Haoran Zhang, Yizhe Xu, Agata Foryciarz, Marzyeh Ghassemi, Nigam H. Shah | (参考訳) 患者集団の平均で正確である臨床結果の予測モデルは、一部の亜集団では大幅に低下し、医療アクセスと品質の不平等を誘発または強化する可能性がある。
分散ロバスト最適化 (DRO) のようなサブポピュレーション全体の最悪のモデル性能を最大化することを目的としたモデルトレーニング手法は、追加の害を加えることなくこの問題に対処しようとする。
電子健康記録データから予測モデルを学ぶための標準アプローチと比較し,分散化と最悪ケースのパフォーマンスを一貫して向上させるモデル開発と選択のアプローチを特定するため,droの大規模実証研究と標準学習手順のバリエーションについて検討した。
評価の過程では,DROアプローチの拡張を導入し,最悪の場合のパフォーマンスを評価するために使用されるメトリクスの仕様化を可能にした。
本研究は病院内死亡率,滞在期間,入院30日間の入院率を予測したモデルの解析を行い,集中治療データを用いて病院内死亡率を予測した。
比較的少数の例外を除いて、トレーニングデータセット全体を用いた標準的な学習手順よりも、検査された各患者サブポピュレーションに対して、アプローチは改善しないことがわかった。
これらの結果から, 患者サブポピュレーションのモデル性能を, 標準プラクティスで達成できる範囲を超えて向上させるためには, 有効試料サイズを暗黙的に, 明示的に増加させる技術を用いて行う必要がある可能性が示唆された。 Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training approaches that aim to maximize worst-case model performance across subpopulations, such as distributionally robust optimization (DRO), attempt to address this problem without introducing additional harms. We conduct a large-scale empirical study of DRO and several variations of standard learning procedures to identify approaches for model development and selection that consistently improve disaggregated and worst-case performance over subpopulations compared to standard approaches for learning predictive models from electronic health records data. In the course of our evaluation, we introduce an extension to DRO approaches that allows for specification of the metric used to assess worst-case performance. We conduct the analysis for models that predict in-hospital mortality, prolonged length of stay, and 30-day readmission for inpatient admissions, and predict in-hospital mortality using intensive care data. We find that, with relatively few exceptions, no approach performs better, for each patient subpopulation examined, than standard learning procedures using the entire training dataset. These results imply that when it is of interest to improve model performance for patient subpopulations beyond what can be achieved with standard practices, it may be necessary to do so via techniques that implicitly or explicitly increase the effective sample size. | 翻訳日:2021-08-30 14:20:30 公開日:2021-08-27 |
# サンプリングのためのハミルトンモンテカルロ法入門 An Introduction to Hamiltonian Monte Carlo Method for Sampling ( http://arxiv.org/abs/2108.12107v1 ) ライセンス: Link先を確認 | Nisheeth K. Vishnoi | (参考訳) 本稿の目的は、Gibs密度$\pi(x) \propto e^{-f(x)}$からサンプリングするハミルトン力学に着想を得たアルゴリズムであるハミルトン・モンテカルロ法(HMC)を導入することである。
連続的な軌跡を正確に計算できる"理想化"のケースに焦点を当てています。
理想化された HMC は$\pi$ を保ち、f$ が強く凸かつ滑らかであるときにその収束を確立する。 The goal of this article is to introduce the Hamiltonian Monte Carlo (HMC) method -- a Hamiltonian dynamics-inspired algorithm for sampling from a Gibbs density $\pi(x) \propto e^{-f(x)}$. We focus on the "idealized" case, where one can compute continuous trajectories exactly. We show that idealized HMC preserves $\pi$ and we establish its convergence when $f$ is strongly convex and smooth. | 翻訳日:2021-08-30 14:20:02 公開日:2021-08-27 |
# Lingxi: 多様性を意識した中国の現代詩生成システム Lingxi: A Diversity-aware Chinese Modern Poetry Generation System ( http://arxiv.org/abs/2108.12108v1 ) ライセンス: Link先を確認 | Xinran Zhang, Maosong Sun, Jiafeng Liu, Xiaobing Li | (参考訳) 詩生成は自然言語処理において難しい課題であった。
単純なニューラルテキスト生成タスクとは異なり、高頻度の単語が多すぎる容易に理解される文は詩的とはみなされないが、低頻度の単語を持つ適切にあいまいな文は新奇で創造的である可能性があるため、詩は新奇性を必要とする。
そこで本稿では,中国の現代詩生成システムlingxiについて紹介する。
本研究では,予測分布の高周波部(ヘッド)をランダム化するランダム化ヘッド(ns-rh)アルゴリズムを用いた核サンプリングを提案する。
提案アルゴリズムは,従来のサンプリング手法と比較して,生成した詩の新規性を著しく向上させることができる。
分布の置換は「頭部」を決定するフィルタリングパラメータを調整し、多様性対応サンプリングを達成することで制御可能である。
フィルタリングされた語彙の大部分がランダム化されている場合でも、実際に流麗な詩を生成できるが、特に目新しさは高い。
また,題名と高い意味的類似性を維持しつつ,短い入力詩題に基づいて,より長く,より情報に富んだ文脈を生成する意味的類似性に基づく拒否サンプリングアルゴリズムを提案する。 Poetry generation has been a difficult task in natural language processing. Unlike plain neural text generation tasks, poetry has a high requirement for novelty, since an easily-understood sentence with too many high frequency words might not be considered as poetic, while adequately ambiguous sentences with low frequency words can possibly be novel and creative. Inspired by this, we present Lingxi, a diversity-aware Chinese modern poetry generation system. We propose nucleus sampling with randomized head (NS-RH) algorithm, which randomizes the high frequency part ("head") of the predicted distribution, in order to emphasize on the "comparatively low frequency" words. The proposed algorithm can significantly increase the novelty of generated poetry compared with traditional sampling methods. The permutation of distribution is controllable by tuning the filtering parameter that determines the "head" to permutate, achieving diversity-aware sampling. We find that even when a large portion of filtered vocabulary is randomized, it can actually generate fluent poetry but with notably higher novelty. We also propose a semantic-similarity-based rejection sampling algorithm, which creates longer and more informative context on the basis of the short input poetry title while maintaining high semantic similarity to the title, alleviating the off-topic issue. | 翻訳日:2021-08-30 14:19:38 公開日:2021-08-27 |
# 正確な \& Fluent 医療用X線画像の自動生成 Automated Generation of Accurate \& Fluent Medical X-ray Reports ( http://arxiv.org/abs/2108.12126v1 ) ライセンス: Link先を確認 | Hoang T.N. Nguyen, Dong Nie, Taivanbat Badamdorj, Yujie Liu, Yingying Zhu, Jason Truong, Li Cheng | (参考訳) 本稿では,胸部x線画像入力からの医療レポート生成の自動化について検討した。
既存のヒトに読みやすいレポートを生成する医療リポート・ジェネレーションと異なり、我々は、フルーレントで臨床的に正確である医療レポートの生成を目指している。
This is achieved by our fully differentiable and end-to-end paradigm containing three complementary modules: taking the chest X-ray images and clinical his-tory document of patients as inputs, our classification module produces an internal check-list of disease-related topics, referred to as enriched disease embedding; the embedding representation is then passed to our transformer-based generator, giving rise to the medical reports; meanwhile, our generator also pro-duces the weighted embedding representation, which is fed to our interpreter to ensure consistency with respect to disease-related topics.Our approach achieved promising results on commonly-used metrics concerning language fluency and clinical accuracy.
さらに、臨床文書や異なる視点の余分なスキャンなど、追加の入力情報が利用できる場合、目立ったパフォーマンス向上は一貫して観察される。 Our paper focuses on automating the generation of medical reports from chest X-ray image inputs, a critical yet time-consuming task for radiologists. Unlike existing medical re-port generation efforts that tend to produce human-readable reports, we aim to generate medical reports that are both fluent and clinically accurate. This is achieved by our fully differentiable and end-to-end paradigm containing three complementary modules: taking the chest X-ray images and clinical his-tory document of patients as inputs, our classification module produces an internal check-list of disease-related topics, referred to as enriched disease embedding; the embedding representation is then passed to our transformer-based generator, giving rise to the medical reports; meanwhile, our generator also pro-duces the weighted embedding representation, which is fed to our interpreter to ensure consistency with respect to disease-related topics.Our approach achieved promising results on commonly-used metrics concerning language fluency and clinical accuracy. Moreover, noticeable performance gains are consistently ob-served when additional input information is available, such as the clinical document and extra scans of different views. | 翻訳日:2021-08-30 14:19:15 公開日:2021-08-27 |
# Secoco: ニューラルネットワーク翻訳のための自己修正エンコーディング Secoco: Self-Correcting Encoding for Neural Machine Translation ( http://arxiv.org/abs/2108.12137v1 ) ライセンス: Link先を確認 | Tao Wang, Chengqi Zhao, Mingxuan Wang, Lei Li, Hang Li, Deyi Xiong | (参考訳) 本稿では,自己補正予測器を導入することによって,ロバストなニューラルネットワーク翻訳のための入力ノイズを効果的に処理するフレームワークであるsecocoについて述べる。
従来のロバストなアプローチとは異なり、sicocoはnmtによってノイズのある入力を明示的に訂正し、翻訳復号プロセスと同時に特定のエラーを削除することができる。
Secocoは、2つの実世界のテストセットと、優れた解釈性を備えたベンチマークWMTデータセットの強いベースラインよりも大幅に改善することができる。
コードとデータセットを間もなく公開します。 This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with input noise for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon. | 翻訳日:2021-08-30 14:19:00 公開日:2021-08-27 |
# 結合エンティティと関係抽出のための分割フィルタネットワーク A Partition Filter Network for Joint Entity and Relation Extraction ( http://arxiv.org/abs/2108.12202v1 ) ライセンス: Link先を確認 | Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, Zhongyu Wei | (参考訳) エンティティと関係抽出のジョイント・エンティティでは、既存の作業はタスク固有の機能を逐次エンコードし、後に抽出された機能が直接接触しないタスク間の機能インタラクションの不均衡に繋がる。
あるいは、エンティティの特徴と関係機能を並列にエンコードする。つまり、各タスクに対する機能表現学習は、入力共有を除いて、ほとんど独立している。
本稿では,タスク間の双方向インタラクションを適切にモデル化する分割フィルタネットワークを提案する。
エンコーダでは、エンティティとリレーショナルゲートという2つのゲートを利用して、ニューロンを2つのタスクパーティションと1つの共有パーティションに分割する。
共有パーティションは、両方のタスクに価値のあるタスク間情報を表し、適切な双方向インタラクションを保証するために2つのタスク間で均等に共有される。
タスクパーティションはタスク内の情報を表し、両方のゲートの協調した努力によって形成され、タスク固有の機能のエンコーディングが互いに依存していることを保証する。
5つの公開データセットの実験結果から,我々のモデルは従来の手法よりもはるかに優れた性能を示した。
ソースコードはhttps://github.com/Coopercoppers/PFNで確認できる。 In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features are dependent upon each other. Experiment results on five public datasets show that our model performs significantly better than previous approaches. The source code can be found in https://github.com/Coopercoppers/PFN. | 翻訳日:2021-08-30 14:18:49 公開日:2021-08-27 |
# 文法的誤り認識のための大規模マスキング言語モデルの能力の検討 Exploring the Capacity of a Large-scale Masked Language Model to Recognize Grammatical Errors ( http://arxiv.org/abs/2108.12216v1 ) ライセンス: Link先を確認 | Ryo Nagata, Manabu Kimura, and Kazuaki Hanawa | (参考訳) 本稿では,文法的誤り検出のための言語モデルに基づく手法のキャパシティを詳細に検討する。
まず,学習データのうち5~10%は,非言語モデルベース法と同等の性能を達成するために,bertベースの誤り検出法では十分であることを示すとともに,精度が同じように振る舞う一方で,bertベースの手法ではトレーニングデータサイズがより高速に向上することを示す。
これらのことから, (i) BERT に基づく手法は, ある種の誤りを認識するのに必要な文法的知識を持つべきであり, (ii) 文法的誤り検出における高い一般化能力を説明するために, 少数のトレーニングサンプルを用いて微調整することで, 誤り検出規則に変換できることが示唆された。
さらに、様々な種類の誤りを認識するための学習ルールにおいて、実際にそのような優れた特性を示す擬似エラーデータを示す。
最後に,これらの知見に基づいて,学習者に関連する文法規則を説明するフィードバックコメントを用いて,文法的誤りを検出するための費用対効果について検討する。 In this paper, we explore the capacity of a language model-based method for grammatical error detection in detail. We first show that 5 to 10% of training data are enough for a BERT-based error detection method to achieve performance equivalent to a non-language model-based method can achieve with the full training data; recall improves much faster with respect to training data size in the BERT-based method than in the non-language model method while precision behaves similarly. These suggest that (i) the BERT-based method should have a good knowledge of grammar required to recognize certain types of error and that (ii) it can transform the knowledge into error detection rules by fine-tuning with a few training samples, which explains its high generalization ability in grammatical error detection. We further show with pseudo error data that it actually exhibits such nice properties in learning rules for recognizing various types of error. Finally, based on these findings, we explore a cost-effective method for detecting grammatical errors with feedback comments explaining relevant grammatical rules to learners. | 翻訳日:2021-08-30 14:18:30 公開日:2021-08-27 |
# AMR-to-Text 生成のための木分解注意 Tree Decomposition Attention for AMR-to-Text Generation ( http://arxiv.org/abs/2108.12300v1 ) ライセンス: Link先を確認 | Lisa Jin, Daniel Gildea | (参考訳) AMRからテキストを生成するには、意味グラフをアノテートする文字列にマッピングする必要がある。
しかし、トランスフォーマーベースのグラフエンコーダは、シーケンス予測に役立つ頂点依存性を貧弱に捉えている。
エンコーダに順序を課すため、グラフの木分解を用いて局所的に頂点自己アテンションを制約する。
完全なクエリキー二部グラフを形成する代わりに、親、サブツリー、頂点の同じ深さの袋の頂点に注意を向ける。
この階層的なコンテキストは、スパーシリティと構造の両方を頂点状態の更新に役立てる。
動的プログラミングを用いて木分解の森を導出し、AMRと最も構造的に類似した木を選択する。
システムの性能は1.6BLEUと1.8chrF++で向上する。 Text generation from AMR requires mapping a semantic graph to a string that it annotates. Transformer-based graph encoders, however, poorly capture vertex dependencies that may benefit sequence prediction. To impose order on an encoder, we locally constrain vertex self-attention using a graph's tree decomposition. Instead of forming a full query-key bipartite graph, we restrict attention to vertices in parent, subtree, and same-depth bags of a vertex. This hierarchical context lends both sparsity and structure to vertex state updates. We apply dynamic programming to derive a forest of tree decompositions, choosing the most structurally similar tree to the AMR. Our system outperforms a self-attentive baseline by 1.6 BLEU and 1.8 chrF++. | 翻訳日:2021-08-30 14:18:14 公開日:2021-08-27 |
# AMR-テキスト生成用潜木分解パーサ Latent Tree Decomposition Parsers for AMR-to-Text Generation ( http://arxiv.org/abs/2108.12304v1 ) ライセンス: Link先を確認 | Lisa Jin, Daniel Gildea | (参考訳) AMR-to-text生成モデルのグラフエンコーダは、しばしば近所の畳み込みやグローバルな頂点の注意に依存する。
これらのアプローチは一般的なグラフに適用されるが、AMRは木のような構造をターゲットとするエンコーダに従うことができる。
エッジを階層にクラスタリングすることで、ツリー分解はグラフ構造を要約する。
本モデルは,木分解の導出森林を符号化し,期待木を抽出する。
ツリーノードの埋め込みから、グラフエンコーダの頂点注意で使用されるグラフエッジ機能を構築する。
自己注意ベースラインにおける最短経路の代わりにTD林を符号化するとBLEUが0.7、chrF++が0.3上昇する。
森林エンコーダは分子特性予測のための畳み込みベースラインを1.92% ROC-AUC で上回る。 Graph encoders in AMR-to-text generation models often rely on neighborhood convolutions or global vertex attention. While these approaches apply to general graphs, AMRs may be amenable to encoders that target their tree-like structure. By clustering edges into a hierarchy, a tree decomposition summarizes graph structure. Our model encodes a derivation forest of tree decompositions and extracts an expected tree. From tree node embeddings, it builds graph edge features used in vertex attention of the graph encoder. Encoding TD forests instead of shortest-pairwise paths in a self-attentive baseline raises BLEU by 0.7 and chrF++ by 0.3. The forest encoder also surpasses a convolutional baseline for molecular property prediction by 1.92% ROC-AUC. | 翻訳日:2021-08-30 14:18:01 公開日:2021-08-27 |
# train short, test long: attention with linear biases will input length extrapolation (英語) Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation ( http://arxiv.org/abs/2108.12409v1 ) ライセンス: Link先を確認 | Ofir Press, Noah A. Smith, Mike Lewis | (参考訳) Vaswaniらによる変圧器モデルの導入以来。
(2017年) 基礎的な疑問が残る: トレーニング中に見るよりも長いシーケンスの推論時にどのように外挿を達成するか?
まず、位置表現法を変更することで外挿を改善することができることを示すが、既存の提案では効率的な外挿を許さない。
本稿では,線形バイアス(alibi)を用いた簡易かつ効率的な外挿法を提案する。
ALiBiは、単語の埋め込みに位置埋め込みを加えるのではなく、クエリキーのアテンションスコアを、その距離に比例する用語でバイアスする。
本研究では,長さ2048の入力シーケンスに外挿する長さ1024の入力シーケンスに対して13億のパラメータモデルをトレーニングし,長さ2048の入力に対してトレーニングした正弦波位置埋め込みモデルと同じ難易度を実現し,メモリを11%削減した。
ALiBiの遅延に対する帰納バイアスは、WikiText-103ベンチマークで複数の強い位置法を上回ります。
最後に、パフォーマンス向上につながる理由を理解するために、ALiBiの分析を提供する。 Since the introduction of the transformer model by Vaswani et al. (2017), a fundamental question remains open: how to achieve extrapolation at inference time to longer sequences than seen during training? We first show that extrapolation can be improved by changing the position representation method, though we find that existing proposals do not allow efficient extrapolation. We introduce a simple and efficient method, Attention with Linear Biases (ALiBi), that allows for extrapolation. ALiBi does not add positional embeddings to the word embeddings; instead, it biases the query-key attention scores with a term that is proportional to their distance. We show that this method allows training a 1.3 billion parameter model on input sequences of length 1024 that extrapolates to input sequences of length 2048, achieving the same perplexity as a sinusoidal position embedding model trained on inputs of length 2048, 11% faster and using 11% less memory. ALiBi's inductive bias towards recency allows it to outperform multiple strong position methods on the WikiText-103 benchmark. Finally, we provide analysis of ALiBi to understand why it leads to better performance. | 翻訳日:2021-08-30 14:17:51 公開日:2021-08-27 |
# wad: 都市自動運転のための深層強化学習エージェント WAD: A Deep Reinforcement Learning Agent for Urban Autonomous Driving ( http://arxiv.org/abs/2108.12134v1 ) ライセンス: Link先を確認 | Arjit Sharma and Sahil Sharma | (参考訳) 都市での自律運転はオープンで困難な問題であり、意思決定システムはマルチエージェントインタラクション、多様なシーン認識、複雑な道路ジオメトリ、そして稀に発生しない現実世界の出来事など、いくつかの動的要因を考慮しなければならない。
一方、深層強化学習(DRL)技術により、エージェントは多くの複雑な政策を学んだ。
Atari GamesやDeepmindのAlphaGoでもスーパーヒューマンレベルのパフォーマンスを達成している。
しかし、現在のDRL技術は複雑な都市運転シナリオではうまく一般化しない。
本稿では,DRL駆動型ウォッチ・アンド・ドライブ(WAD)エージェントをエンド・ツー・エンドの都市自動運転に適用する。
この研究は、最近の進歩により、CARLAの高次元空間における重要な物体や状態を検出し、それらから潜伏状態を取り出すことを目的としている。
さらに、TD3およびSAC法に基づいて、潜伏状態情報をWADエージェントに渡すことにより、最適駆動ポリシーを学習する。
我々の新しいアプローチでは、リソースの削減、異なる運転タスクのステップバイステップ学習、ハードエピソード終了ポリシー、報酬メカニズムにより、エージェントは元のCARLAベンチマークの全運転タスクにおいて100%の成功率を達成することができ、さらに複雑なNoCrashベンチマークでは82%の新記録を樹立し、NoCrashベンチマークでは30%以上の最先端モデルを上回りました。 Urban autonomous driving is an open and challenging problem to solve as the decision-making system has to account for several dynamic factors like multi-agent interactions, diverse scene perceptions, complex road geometries, and other rarely occurring real-world events. On the other side, with deep reinforcement learning (DRL) techniques, agents have learned many complex policies. They have even achieved super-human-level performances in various Atari Games and Deepmind's AlphaGo. However, current DRL techniques do not generalize well on complex urban driving scenarios. This paper introduces the DRL driven Watch and Drive (WAD) agent for end-to-end urban autonomous driving. Motivated by recent advancements, the study aims to detect important objects/states in high dimensional spaces of CARLA and extract the latent state from them. Further, passing on the latent state information to WAD agents based on TD3 and SAC methods to learn the optimal driving policy. Our novel approach utilizing fewer resources, step-by-step learning of different driving tasks, hard episode termination policy, and reward mechanism has led our agents to achieve a 100% success rate on all driving tasks in the original CARLA benchmark and set a new record of 82% on further complex NoCrash benchmark, outperforming the state-of-the-art model by more than +30% on NoCrash benchmark. | 翻訳日:2021-08-30 14:17:31 公開日:2021-08-27 |
# 修復セマンティックスにおける経時的DLライトの不整合データのクリーニング Cleaning Inconsistent Data in Temporal DL-Lite Under Best Repair Semantics ( http://arxiv.org/abs/2108.12149v1 ) ライセンス: Link先を確認 | Mourad Ouziri (LIPADE), Sabiha Tahrat (LIPADE), Salima Benbernou (LIPADE), Mourad Ouzirri | (参考訳) 本稿では,時間記述論理(TDL)知識ベースにおける一貫性のないデータ処理の問題に対処する。
本稿では,知識ベースのデータ部分を不整合の原因として考慮し,ABox修復手法を提案する。
これは、tdlの知識ベースで修復を扱う最初の作業である。
そのために,(1)時間的不整合の検出,2)データ時間的リペアメントの提案という2つの目標を設定した。
不整合検出のために、TDL概念のNP完全上界を厳密に設定し、正確な説明(一貫性のないデータアサーションの集合)をもたらすように高度に最適化されたDL推論器を使用するTDLからDLへの還元アプローチを提案する。
その後、得られた説明から、許容された剛性述語とアサーションの時間順序に基づいて、時間設定における最良の修復を自動的に計算する手法を提案する。 In this paper, we address the problem of handling inconsistent data in Temporal Description Logic (TDL) knowledge bases. Considering the data part of the Knowledge Base as the source of inconsistency over time, we propose an ABox repair approach. This is the first work handling the repair in TDL Knowledge bases. To do so, our goal is twofold: 1) detect temporal inconsistencies and 2) propose a data temporal reparation. For the inconsistency detection, we propose a reduction approach from TDL to DL which allows to provide a tight NP-complete upper bound for TDL concept satisfiability and to use highly optimised DL reasoners that can bring precise explanation (the set of inconsistent data assertions). Thereafter, from the obtained explanation, we propose a method for automatically computing the best repair in the temporal setting based on the allowed rigid predicates and the time order of assertions. | 翻訳日:2021-08-30 14:17:04 公開日:2021-08-27 |
# SMTによるオントロジーに基づくデータ認識プロセスの安全性検証(拡張版) SMT-Based Safety Verification of Data-Aware Processes under Ontologies (Extended Version) ( http://arxiv.org/abs/2108.12330v1 ) ライセンス: Link先を確認 | Diego Calvanese and Alessandro Gianola and Andrea Mazzullo and Marco Montali | (参考訳) データ認識プロセス(DAP)の検証の文脈では、いわゆるアーティファクト中心システムのパラメータ化安全性特性を検証するために、満足度変調理論(SMT)に基づく正式なアプローチが検討されている。
このアプローチには、モデル理論の概念と後方到達性に基づくアルゴリズム技術の組み合わせが必要である。
ここでは,データベースを管理する代わりに,RDFSで表現された記述論理(DL)オントロジーを運用する,このスペクトルで最も調査されたモデルの1つ,すなわち単純なアーティファクトシステム(SAS)を紹介した。
このDLは、適切なモデル理論特性を享受し、後方到達性がまだ適用可能なDLベースのSASを定義することができ、対応する安全問題のPSPACEにおける決定可能性をもたらす。 In the context of verification of data-aware processes (DAPs), a formal approach based on satisfiability modulo theories (SMT) has been considered to verify parameterised safety properties of so-called artifact-centric systems. This approach requires a combination of model-theoretic notions and algorithmic techniques based on backward reachability. We introduce here a variant of one of the most investigated models in this spectrum, namely simple artifact systems (SASs), where, instead of managing a database, we operate over a description logic (DL) ontology expressed in (a slight extension of) RDFS. This DL, enjoying suitable model-theoretic properties, allows us to define DL-based SASs to which backward reachability can still be applied, leading to decidability in PSPACE of the corresponding safety problems. | 翻訳日:2021-08-30 14:16:47 公開日:2021-08-27 |
# 認知取引のための計算アーキテクチャにおけるヒューリスティックスと学習の統合 Integrating Heuristics and Learning in a Computational Architecture for Cognitive Trading ( http://arxiv.org/abs/2108.12333v1 ) ライセンス: Link先を確認 | Remo Pareschi, Federico Zappone | (参考訳) 近年、画像解析、自然言語理解、戦略ゲームといった分野における人工知能の成功は、金融界の関心を喚起している。
具体的には、ロボットトレーダーとして知られる人工エージェントの作成に関して、経験豊富な人的トレーダーのスキルで金融市場をジャグリングできる、高い期待と継続的なエンジニアリングプロジェクトがある。
明らかな経済的意味はさておき、これは間違いなく大きな科学的関心の領域であり、そのような真のコンテキストがAI技術の使用に影響を及ぼす課題のためである。
そのため、このようなレベルで動作可能な人工エージェントは、単に角を曲がっているだけでなく、単純な答えもなく、様々な技術や手法の一致が、その取り組みの成功につながっていることに留意する必要がある。
本稿では,ロボット取引技術の現状を,認知的取引(Cognitive Trading)と呼ぶ次のレベルのインテリジェンスへと引き上げるという,汎用的な目標を視野に入れながら,効果的なロボットトレーサの設計に固有の課題を概観する。
我々のアプローチの鍵は、2つの方法論的、技術的方向の結合であり、どちらも人工知能の規律分野に深く根ざしているが、これまでのところ、ヒューリスティックスと学習という2つの方法に分かれている。 The successes of Artificial Intelligence in recent years in areas such as image analysis, natural language understanding and strategy games have sparked interest from the world of finance. Specifically, there are high expectations, and ongoing engineering projects, regarding the creation of artificial agents, known as robotic traders, capable of juggling the financial markets with the skill of experienced human traders. Obvious economic implications aside, this is certainly an area of great scientific interest, due to the challenges that such a real context poses to the use of AI techniques. Precisely for this reason, we must be aware that artificial agents capable of operating at such levels are not just round the corner, and that there will be no simple answers, but rather a concurrence of various technologies and methods to the success of the effort. In the course of this article, we review the issues inherent in the design of effective robotic traders as well as the consequently applicable solutions, having in view the general objective of bringing the current state of the art of robo-trading up to the next level of intelligence, which we refer to as Cognitive Trading. Key to our approach is the joining of two methodological and technological directions which, although both deeply rooted in the disciplinary field of artificial intelligence, have so far gone their separate ways: heuristics and learning. | 翻訳日:2021-08-30 14:16:32 公開日:2021-08-27 |
# スタイル伝達法を用いた学習記述子による水中ソナー画像のマッチング Matching Underwater Sonar Images by the Learned Descriptor Based on Style Transfer Method ( http://arxiv.org/abs/2108.12072v1 ) ライセンス: Link先を確認 | Xiaoteng Zhou, Changli Yu, Xin Yuan, Citong Luo | (参考訳) 本稿では,水中ソナー画像のマッチング性能を向上させるために,スタイル転送技術と学習ディスクリプタを組み合わせた手法を提案する。
水中視覚の分野では、sonarは現在、最も効果的な長距離検出センサーであり、地図作成や目標探索に優れた性能を発揮する。
しかし、従来の画像マッチングアルゴリズムはすべて光学画像に基づいて開発されている。
この矛盾を解決するために、ソナー画像を光学的スタイルに変換するためにスタイル転送法が用いられ、同時にソナー画像マッチングに優れた表現性を有する学習記述子が導入された。
実験により,この手法はソナー画像のマッチング品質を大幅に向上させることが示された。
また, 水中ソナー画像の事前処理に, スタイル転送手法を用いて新たなアイデアを提供する。 This paper proposes a method that combines the style transfer technique and the learned descriptor to enhance the matching performances of underwater sonar images. In the field of underwater vision, sonar is currently the most effective long-distance detection sensor, it has excellent performances in map building and target search tasks. However, the traditional image matching algorithms are all developed based on optical images. In order to solve this contradiction, the style transfer method is used to convert the sonar images into optical styles, and at the same time, the learned descriptor with excellent expressiveness for sonar images matching is introduced. Experiments show that this method significantly enhances the matching quality of sonar images. In addition, it also provides new ideas for the preprocessing of underwater sonar images by using the style transfer approach. | 翻訳日:2021-08-30 14:15:27 公開日:2021-08-27 |
# FOVEA: 自律ナビゲーションのための画像拡大 FOVEA: Foveated Image Magnification for Autonomous Navigation ( http://arxiv.org/abs/2108.12102v1 ) ライセンス: Link先を確認 | Chittesh Thavamani, Mengtian Li, Nicolas Cebron, Deva Ramanan | (参考訳) 高分解能ビデオストリームの効率的な処理は、自動運転のような多くのロボティクスアプリケーションにとって安全性に欠かせない。
イメージダウンサンプリングは、遅延制約を満たすための一般的なテクニックである。
しかし、この単純なアプローチは、小さな物体を識別する物体検出器の能力を大幅に制限する。
本稿では,小さな入力キャンバスを維持しながら,ある領域を弾性的に拡大する注意的アプローチを提案する。
拡大された領域は、オブジェクトを含む確率が高いと考えられており、その信号はデータセット全体から、あるいは最近のオブジェクト予測から計算されたフレームレベルから来ることができる。
拡大化はKDEベースのマッピングによって実装され、境界ボックスをワープパラメータに変換し、反クロップ正則化でイメージサンプルに入力する。
検出器は歪んだ画像で供給され、元の空間で境界ボックス出力を得るために微分可能な後方マッピングを適用する。
我々の地域拡大により、アルゴリズムは高解像度処理のコストを伴わずに高解像度入力をうまく利用することができる。
Argoverse-HD と BDD100K の自律走行データセットでは,提案手法が標準の高速 R-CNN を超越した検出APを微調整なしで促進することを示す。
さらに,従来のストリーミング検出技術の上に構築した手法では,Argoverse-HD(GTX 1080 Ti GPUで17.8から23.0まで)でAPをストリーミングする新たな記録が設定されており,精度とレイテンシのトレードオフが優れていることが示唆された。 Efficient processing of high-resolution video streams is safety-critical for many robotics applications such as autonomous driving. Image downsampling is a commonly adopted technique to ensure the latency constraint is met. However, this naive approach greatly restricts an object detector's capability to identify small objects. In this paper, we propose an attentional approach that elastically magnifies certain regions while maintaining a small input canvas. The magnified regions are those that are believed to have a high probability of containing an object, whose signal can come from a dataset-wide prior or frame-level prior computed from recent object predictions. The magnification is implemented by a KDE-based mapping to transform the bounding boxes into warping parameters, which are then fed into an image sampler with anti-cropping regularization. The detector is then fed with the warped image and we apply a differentiable backward mapping to get bounding box outputs in the original space. Our regional magnification allows algorithms to make better use of high-resolution input without incurring the cost of high-resolution processing. On the autonomous driving datasets Argoverse-HD and BDD100K, we show our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning. Additionally, building on top of the previous state-of-the-art in streaming detection, our method sets a new record for streaming AP on Argoverse-HD (from 17.8 to 23.0 on a GTX 1080 Ti GPU), suggesting that it has achieved a superior accuracy-latency tradeoff. | 翻訳日:2021-08-30 14:15:16 公開日:2021-08-27 |
# 両眼相互学習によるショット分類の改善 Binocular Mutual Learning for Improving Few-shot Classification ( http://arxiv.org/abs/2108.12104v1 ) ライセンス: Link先を確認 | Ziqi Zhou, Xi Qiu, Jiangtao Xie, Jianan Wu and Chi Zhang | (参考訳) 少数の学習手法のほとんどは、豊富なラベル付きデータ(ベースセット)を持つデータセットから知識を伝達することを学ぶ。
基本セット上のクラス空間の観点からは、既存のメソッドは、通常の事前トレーニングによるグローバルビュー下のすべてのクラスの利用にフォーカスするか、あるいはローカルビューのわずかなクラス内でメタタスクをトレーニングするためのエピソディックな方法を採用することにもっと注意を払うかのどちらかである。
しかし、この2つの見解の相互作用はまれである。
2つのビューは補完的な情報をキャプチャするので、さらなるパフォーマンス向上を達成するための互換性を自然に考えます。
相互学習パラダイムと双眼視差に着想を得て,両眼相互学習(BML)という統合された枠組みを提案する。
具体的には、グローバルビューはクラス全体で学び、リッチなクラス間関係を捉える。
一方、ローカルビューは各エピソード内のローカルクラス空間で学び、正のペアを正しくマッチングすることに集中する。
さらに、相互の相互交流により、協調学習と相互の有用な知識の暗黙の探索が促進される。
メタテストでは、両眼埋め込みを集約して意思決定をサポートし、分類の精度を大幅に向上させる。
クロスドメイン検証を含む複数のベンチマークで行った広範囲な実験により,本手法の有効性が確認された。 Most of the few-shot learning methods learn to transfer knowledge from datasets with abundant labeled data (i.e., the base set). From the perspective of class space on base set, existing methods either focus on utilizing all classes under a global view by normal pretraining, or pay more attention to adopt an episodic manner to train meta-tasks within few classes in a local view. However, the interaction of the two views is rarely explored. As the two views capture complementary information, we naturally think of the compatibility of them for achieving further performance gains. Inspired by the mutual learning paradigm and binocular parallax, we propose a unified framework, namely Binocular Mutual Learning (BML), which achieves the compatibility of the global view and the local view through both intra-view and cross-view modeling. Concretely, the global view learns in the whole class space to capture rich inter-class relationships. Meanwhile, the local view learns in the local class space within each episode, focusing on matching positive pairs correctly. In addition, cross-view mutual interaction further promotes the collaborative learning and the implicit exploration of useful knowledge from each other. During meta-test, binocular embeddings are aggregated together to support decision-making, which greatly improve the accuracy of classification. Extensive experiments conducted on multiple benchmarks including cross-domain validation confirm the effectiveness of our method. | 翻訳日:2021-08-30 14:14:49 公開日:2021-08-27 |
# 認識認識:潜在認知のオープンセット認識への応用 Recognition Awareness: An Application of Latent Cognizance to Open-Set Recognition ( http://arxiv.org/abs/2108.12115v1 ) ライセンス: Link先を確認 | Tatpong Katanyukul and Pisit Nakjai | (参考訳) 本研究では,ソフトマックス出力の確率的新しい解釈をオープンセット認識(osr)に適用する。
softmaxは分類やオブジェクト認識で広く使われているメカニズムである。
しかし、ソフトマックス機構は、モデルにクローズドセットパラダイム、すなわち事前定義されたラベルの集合からオブジェクトクラスを予測するように強制する。
この特徴は分類の有効性に寄与するが、物体認識においてナンセンスな予測のリスクをもたらす。
オブジェクト認識はしばしば動的かつ多様な条件下で実行される。
外部オブジェクト -- 準備されていないクラスのオブジェクト -- はいつでも遭遇することができる。
OSRは、オブジェクト認識における異物識別の問題に対処することを目的としている。
ベイズ定理と文脈の条件付けの強調に基づき、ソフトマックス推論が再解釈されている。
この再解釈は、Latent Cognizance (LC)と呼ばれるOSRの新しいアプローチにつながった。
調査では、Imagenet 2012データセットや、ばかばかしやオープンセットイメージなど、さまざまなシナリオが採用されている。
LC仮説を支持し,OSRに対する効果を示した。 This study investigates an application of a new probabilistic interpretation of a softmax output to Open-Set Recognition (OSR). Softmax is a mechanism wildly used in classification and object recognition. However, a softmax mechanism forces a model to operate under a closed-set paradigm, i.e., to predict an object class out of a set of pre-defined labels. This characteristic contributes to efficacy in classification, but poses a risk of non-sense prediction in object recognition. Object recognition is often operated under a dynamic and diverse condition. A foreign object -- an object of any unprepared class -- can be encountered at any time. OSR is intended to address an issue of identifying a foreign object in object recognition. Based on Bayes theorem and the emphasis of conditioning on the context, softmax inference has been re-interpreted. This re-interpretation has led to a new approach to OSR, called Latent Cognizance (LC). Our investigation employs various scenarios, using Imagenet 2012 dataset as well as fooling and open-set images. The findings support LC hypothesis and show its effectiveness on OSR. | 翻訳日:2021-08-30 14:14:25 公開日:2021-08-27 |
# 水中音響・光学画像における画像属性移動と局所特徴に基づくマッチングアルゴリズム A Matching Algorithm based on Image Attribute Transfer and Local Features for Underwater Acoustic and Optical Images ( http://arxiv.org/abs/2108.12151v1 ) ライセンス: Link先を確認 | Xiaoteng Zhou, Changli Yu, Xin Yuan, Citong Luo | (参考訳) 水中視覚研究の分野では、ソナーセンサーと光学カメラのマッチングが常に難しい問題となっている。
それらの間の撮像機構の違いは、グレー値、テクスチャ、コントラストなどである。
音響画像のうち、光学画像は局所的な位置でも変化するため、光学画像に基づく従来のマッチング手法は無効となる。
水中データ取得の困難さと高コストとが組み合わさって、ココスト光データ融合技術の研究プロセスにさらに影響を及ぼす。
本研究では,水中センサデータの利用を最大限に活用し,マルチセンサー情報融合(msif)の開発を促進するために,深層学習手法に基づく画像属性転送法を適用し,画像マッチングの問題点を解決する。
同時に、難解な音響光学マッチング問題を解決するために、高度な局所特徴記述子が導入される。
実験結果から,提案手法は音響光学画像を効果的に前処理し,正確なマッチング結果が得られることがわかった。
さらに,この手法は画像深度セマンティックレイヤの組み合わせに基づいており,水中のマルチセンサ画像マッチング問題に対する新たな解決策を提供する原画像ペア間の局所的特徴マッチング関係を間接的に表示することができる。 In the field of underwater vision research, image matching between the sonar sensors and optical cameras has always been a challenging problem. Due to the difference in the imaging mechanism between them, which are the gray value, texture, contrast, etc. of the acoustic images and the optical images are also variant in local locations, which makes the traditional matching method based on the optical image invalid. Coupled with the difficulties and high costs of underwater data acquisition, it further affects the research process of acousto-optic data fusion technology. In order to maximize the use of underwater sensor data and promote the development of multi-sensor information fusion (MSIF), this study applies the image attribute transfer method based on deep learning approach to solve the problem of acousto-optic image matching, the core of which is to eliminate the imaging differences between them as much as possible. At the same time, the advanced local feature descriptor is introduced to solve the challenging acousto-optic matching problem. Experimental results show that our proposed method could preprocess acousto-optic images effectively and obtain accurate matching results. Additionally, the method is based on the combination of image depth semantic layer, and it could indirectly display the local feature matching relationship between original image pair, which provides a new solution to the underwater multi-sensor image matching problem. | 翻訳日:2021-08-30 14:14:11 公開日:2021-08-27 |
# 一段階物体検出におけるアライメントとアライメントの相違について Rethinking the Aligned and Misaligned Features in One-stage Object Detection ( http://arxiv.org/abs/2108.12176v1 ) ライセンス: Link先を確認 | Yang Yang, Min Li, Bo Meng, Junxing Ren, Degang Sun, Zihao Huang | (参考訳) 1段階の物体検出器は、検出結果を予測するために点特徴に依存する。
しかし、ポイントフィーチャは、オブジェクト全体の情報を欠く可能性があり、オブジェクトとポイントフィーチャの間のミスアライメントにつながります。
一方、分類と回帰タスクは異なる対象領域に敏感であるが、それらの特徴は空間的に整列している。
本稿では,完全畳み込み方式を壊さずに,各タスクの整列および非整合性をそれぞれ生成できる,シンプルかつプラグイン演算子を提案する。
各センシティブな領域に存在する2つのタスク認識ポイントセットを予測することにより、このオペレータは2つのタスクを空間次元から切り離し、ポイント特徴をオブジェクトに合わせることができる。
また,分類と回帰に対する長距離スキップ接続の逆効果の興味深い発見も明らかにした。
oat(object-aligned and task-disentangled operator)に基づいて、より正確な検出結果のためにポイントセット機能を明示的に活用するoot-netを提案する。
MS-COCOデータセットの大規模な実験により、OATは$\sim$2 APで異なる1段検出器を継続的に強化できることが示された。
特に、OAT-NetはRes2Net-101-DCNバックボーンで53.7 APを達成した。 One-stage object detectors rely on the point feature to predict the detection results. However, the point feature may lack the information of the whole object and lead to a misalignment between the object and the point feature. Meanwhile, the classification and regression tasks are sensitive to different object regions, but their features are spatially aligned. In this paper, we propose a simple and plug-in operator that could generate aligned and disentangled features for each task, respectively, without breaking the fully convolutional manner. By predicting two task-aware point sets that are located in each sensitive region, this operator could disentangle the two tasks from the spatial dimension, as well as align the point feature with the object. We also reveal an interesting finding of the opposite effect of the long-range skip-connection for classification and regression, respectively. Based on the object-aligned and task-disentangled operator (OAT), we propose OAT-Net, which explicitly exploits point-set features for more accurate detection results. Extensive experiments on the MS-COCO dataset show that OAT can consistently boost different one-stage detectors by $\sim$2 AP. Notably, OAT-Net achieves 53.7 AP with Res2Net-101-DCN backbone and shows promising performance gain for small objects. | 翻訳日:2021-08-30 14:13:48 公開日:2021-08-27 |
# MultiSiam: 自律運転のための自己教師型マルチインスタンス・シームズ表現学習 MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving ( http://arxiv.org/abs/2108.12178v1 ) ライセンス: Link先を確認 | Kai Chen, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung | (参考訳) 自動運転は長年にわたって注目を集めてきたが、おそらくモデルトレーニングのためのラベル付きデータ収集が難しいため、予想以上に難しいことが判明した。
表現学習のみにラベルのないデータを活用する自己教師付き学習(ssl)は、モデルパフォーマンスを改善する有望な方法かもしれない。
しかし、既存のSSLメソッドは通常、ストリートシーンのようなマルチインスタンスデータセットには適用できない単一中心オブジェクト保証に依存している。
この制限を緩和するために,(1)クロスビュー一貫性のための正のサンプルの定義方法,(2)マルチインスタンス環境における類似度の測定方法の2つの課題を提起する。
我々はまず、ランダムな収穫中にIoU閾値を採用し、グローバルな一貫性を局所的な一貫性に伝達する。
次に,マルチインテンス類似度測定のための2次元特徴マップを実現する2つの特徴アライメント手法を提案する。
さらに,自己注意型画像内クラスタリングを採用し,画像内類似性や翻訳不変性をさらに推し進める。
Waymoデータセットで事前トレーニングを行うと、MultiSiam(MultiSiam)と呼ばれる手法が一般化能力を大幅に向上し、CityscapesやBDD100Kを含む自動運転ベンチマーク上で最先端の転送性能を達成する一方で、既存のSSL対応であるMoCo、MoCo-v2、BYOLは大幅なパフォーマンス低下を示します。
大規模な自動運転データセットであるSODA10Mの事前トレーニングにより、MultiSiamはImageNetの事前トレーニングされたMoCo-v2を超え、ドメイン固有の事前トレーニングの可能性を示している。
コードはhttps://github.com/kaichen1998/multisiamで入手できる。 Autonomous driving has attracted much attention over the years but turns out to be harder than expected, probably due to the difficulty of labeled data collection for model training. Self-supervised learning (SSL), which leverages unlabeled data only for representation learning, might be a promising way to improve model performance. Existing SSL methods, however, usually rely on the single-centric-object guarantee, which may not be applicable for multi-instance datasets such as street scenes. To alleviate this limitation, we raise two issues to solve: (1) how to define positive samples for cross-view consistency and (2) how to measure similarity in multi-instance circumstances. We first adopt an IoU threshold during random cropping to transfer global-inconsistency to local-consistency. Then, we propose two feature alignment methods to enable 2D feature maps for multi-instance similarity measurement. Additionally, we adopt intra-image clustering with self-attention for further mining intra-image similarity and translation-invariance. Experiments show that, when pre-trained on Waymo dataset, our method called Multi-instance Siamese Network (MultiSiam) remarkably improves generalization ability and achieves state-of-the-art transfer performance on autonomous driving benchmarks, including Cityscapes and BDD100K, while existing SSL counterparts like MoCo, MoCo-v2, and BYOL show significant performance drop. By pre-training on SODA10M, a large-scale autonomous driving dataset, MultiSiam exceeds the ImageNet pre-trained MoCo-v2, demonstrating the potential of domain-specific pre-training. Code will be available at https://github.com/KaiChen1998/MultiSiam. | 翻訳日:2021-08-30 14:13:25 公開日:2021-08-27 |
# TIMo - 飛行時間カメラを用いた屋内ビル監視用データセット TIMo -- A Dataset for Indoor Building Monitoring with a Time-of-Flight Camera ( http://arxiv.org/abs/2108.12196v1 ) ライセンス: Link先を確認 | Pascal Schneider, Yuriy Anisimov, Raisul Islam, Bruno Mirbach, Jason Rambach, Fr\'ed\'eric Grandidier, Didier Stricker | (参考訳) ToF(Time-of-flight Indoor Monitoring)カメラを用いて室内空間をビデオで監視するTIMo(Time-of-flight Indoor Monitoring)を提案する。
その結果得られた深度ビデオは、さまざまな事前定義されたアクションを実行する人々を特徴付けます。
人のカウントと異常検出のための人物検出は2つのターゲットアプリケーションである。
既存の監視ビデオデータセットのほとんどは、グレースケールまたはRGBビデオを提供する。
一方、深度情報は、コンピュータビジョンの他の研究分野で人気があり、より一般的であるにもかかわらず、このクラスのデータセットでは依然として希少である。
私たちのデータセットは、監視ビデオデータセットのランドスケープにおけるこのギャップに対処します。
録音は2つの異なる場所で行われ、ToFカメラはトップダウンか傾斜した視点で設定された。
データセットはhttps://vizta-tof.kl.dfki.de/timo-dataset-overview/で公開されている。 We present TIMo (Time-of-flight Indoor Monitoring), a dataset for video-based monitoring of indoor spaces captured using a time-of-flight (ToF) camera. The resulting depth videos feature people performing a set of different predefined actions, for which we provide detailed annotations. Person detection for people counting and anomaly detection are the two targeted applications. Most existing surveillance video datasets provide either grayscale or RGB videos. Depth information, on the other hand, is still a rarity in this class of datasets in spite of being popular and much more common in other research fields within computer vision. Our dataset addresses this gap in the landscape of surveillance video datasets. The recordings took place at two different locations with the ToF camera set up either in a top-down or a tilted perspective on the scene. The dataset is publicly available at https://vizta-tof.kl.dfki.de/timo-dataset-overview/. | 翻訳日:2021-08-30 14:12:56 公開日:2021-08-27 |
# DC-GNet:3次元形状再構成のためのグラフ畳み込みネットワークの深層メッシュ関係 DC-GNet: Deep Mesh Relation Capturing Graph Convolution Network for 3D Human Shape Reconstruction ( http://arxiv.org/abs/2108.12384v1 ) ライセンス: Link先を確認 | Shihao Zhou, Mengxi Jiang, Shanshan Cai, Yunqi Lei | (参考訳) 本稿では,1枚の画像から完全な3次元人体形状を再構築することを目的とする。
従来の頂点レベルおよびパラメータ回帰手法は、ノード間の正の関係を符号化する事前定義された隣接行列に基づいて3次元の人体形状を再構成する。
3次元人体の表面の深いトポロジカルな関係は慎重に利用されていない。
さらに、既存のほとんどのアプローチのパフォーマンスは、現実世界のシーンでより多くのオクルージョンケースを扱う場合、ドメインのギャップに苦しむことが多い。
本研究では,3次元形状復元のための形状補完タスクを備えたDeep Mesh Relation Capturing Graph Convolution Network, DC-GNetを提案する。
まず、正と負の関係を符号化する適応行列を導入するメッシュ頂点内での深い関係を捉えることを提案する。
次に,種々の閉塞症例を事前に学習するための形状完了タスクを提案する。
我々のアプローチは、より遠い領域のノード間のより微妙な関係からメッシュ構造を符号化する。
さらに, 形状補完モジュールは, 屋外場面における性能劣化問題を緩和する。
いくつかのベンチマークにおいて、我々のアプローチは以前の3次元人間のポーズと形状推定のアプローチよりも優れていた。 In this paper, we aim to reconstruct a full 3D human shape from a single image. Previous vertex-level and parameter regression approaches reconstruct 3D human shape based on a pre-defined adjacency matrix to encode positive relations between nodes. The deep topological relations for the surface of the 3D human body are not carefully exploited. Moreover, the performance of most existing approaches often suffer from domain gap when handling more occlusion cases in real-world scenes. In this work, we propose a Deep Mesh Relation Capturing Graph Convolution Network, DC-GNet, with a shape completion task for 3D human shape reconstruction. Firstly, we propose to capture deep relations within mesh vertices, where an adaptive matrix encoding both positive and negative relations is introduced. Secondly, we propose a shape completion task to learn prior about various kinds of occlusion cases. Our approach encodes mesh structure from more subtle relations between nodes in a more distant region. Furthermore, our shape completion module alleviates the performance degradation issue in the outdoor scene. Extensive experiments on several benchmarks show that our approach outperforms the previous 3D human pose and shape estimation approaches. | 翻訳日:2021-08-30 14:12:19 公開日:2021-08-27 |
# 大規模パーソナライズプロモーションのための枠組み A framework for massive scale personalized promotion ( http://arxiv.org/abs/2108.12100v1 ) ライセンス: Link先を確認 | Yitao Shen, Yue Wang, Xingyu Lu, Feng Qi, Jia Yan, Yixiang Mu, Yao Yang, YiFan Peng, Jinjie Gu | (参考訳) 消費者向けプラットフォームを構築するテクノロジー企業は、大規模なユーザー人口にアクセスできるかもしれない。
近年,定量化インセンティブによるプロモーションが,このようなプラットフォーム上でのアクティブユーザの増加に人気がある。
一方、ユーザ活動の増加は、ネットワーク効果を導入し、広告オーディエンスをもたらし、他のメリットを生み出すことができる。
一方、大規模なプロモーションは膨大なコストを引き起こす。
したがって、投資収益率(roi)の観点からのプロモーションキャンペーンの効率化は、多くの企業にとって大きな関心事である。
本稿では,大規模プロモーションキャンペーンのROIを最適化する実用的な2段階フレームワークを提案する。
第1段階では、ユーザの個人プロモーション応答曲線を機械学習技術でモデル化する。
第2段階では、ビジネスの目的とリソースの制約が最適化問題として定式化され、その決定変数が各ユーザにどれだけのインセンティブを与えるかである。
第2段階で効果的に最適化するためには、第1段階では対実予測とノイズ低減が不可欠である。
既存の偽物予測手法を用いてデータの治療バイアスを補正する。
また,新しいディープニューラルネットワーク(DNN)アーキテクチャ,ディープアイソトニック・プロモーション・ネットワーク(DIPN)を導入し,プロモーション応答曲線のノイズを低減する。
DIPNアーキテクチャは、同調性と滑らかさを強制することによって、これまでの応答曲線形状の知識を取り入れている。
我々の実験では、通常のDNNや他の最先端の形状制約モデルよりも優れていた。 Technology companies building consumer-facing platforms may have access to massive-scale user population. In recent years, promotion with quantifiable incentive has become a popular approach for increasing active users on such platforms. On one hand, increased user activities can introduce network effect, bring in advertisement audience, and produce other benefits. On the other hand, massive-scale promotion causes massive cost. Therefore making promotion campaigns efficient in terms of return-on-investment (ROI) is of great interest to many companies. This paper proposes a practical two-stage framework that can optimize the ROI of various massive-scale promotion campaigns. In the first stage, users' personal promotion-response curves are modeled by machine learning techniques. In the second stage, business objectives and resource constraints are formulated into an optimization problem, the decision variables of which are how much incentive to give to each user. In order to do effective optimization in the second stage, counterfactual prediction and noise-reduction are essential for the first stage. We leverage existing counterfactual prediction techniques to correct treatment bias in data. We also introduce a novel deep neural network (DNN) architecture, the deep-isotonic-promotion-network (DIPN), to reduce noise in the promotion response curves. The DIPN architecture incorporates our prior knowledge of response curve shape, by enforcing isotonicity and smoothness. It out-performed regular DNN and other state-of-the-art shape-constrained models in our experiments. | 翻訳日:2021-08-30 14:12:00 公開日:2021-08-27 |
# オープンエンディングデータに対する主観学習 Subjective Learning for Open-Ended Data ( http://arxiv.org/abs/2108.12113v1 ) ライセンス: Link先を確認 | Tianren Zhang, Yizhou Jiang, Xin Su, Shangqi Guo, Feng Chen | (参考訳) 従来の機械学習手法では、データはタスクに応じて分割され、各タスク内のデータは単一のターゲット関数によってモデル化される。
しかし、この仮定は手動のタスク定義がないオープンエンド環境では無効である。
本稿では,オープンエンドデータから学ぶための新しい教師あり学習パラダイムを提案する。
オープンエンドデータには本質的に複数の単一値決定論的マッピング関数が必要であり、従来の教師付きデータと重要な構造的違いを示す。
我々はこの構造的特性をマッピングランクと呼ばれる新しい概念で正式に説明し、データのマッピングランクが1より大きい場合、異なるデータサンプルが互いに衝突する可能性があるため、オープンエンドデータが従来の教師付き学習に根本的な困難をもたらすことを示す。
この問題に対処するために,我々は,複数の候補モデル間でデータを自動的に割り当ててコンフリクトを解決する主観的機能である主観的機能であるオープン・エンド・教師付き学習(osl)フレームワークを考案し,自然な認識階層を構築する。
我々はOSLの有効性を理論的にも実証的にも示し、OSLがタスクレベルの監督なしに人間的なタスク認知を実現することを示す。 Conventional machine learning methods typically assume that data is split according to tasks, and the data in each task can be modeled by a single target function. However, this assumption is invalid in open-ended environments where no manual task definition is available. In this paper, we present a novel supervised learning paradigm of learning from open-ended data. Open-ended data inherently requires multiple single-valued deterministic mapping functions to capture all its input-output relations, exhibiting an essential structural difference from conventional supervised data. We formally expound this structural property with a novel concept termed as mapping rank, and show that open-ended data poses a fundamental difficulty for conventional supervised learning, since different data samples may conflict with each other if the mapping rank of data is larger than one. To address this issue, we devise an Open-ended Supervised Learning (OSL) framework, of which the key innovation is a subjective function that automatically allocates the data among multiple candidate models to resolve the conflict, developing a natural cognition hierarchy. We demonstrate the efficacy of OSL both theoretically and empirically, and show that OSL achieves human-like task cognition without task-level supervision. | 翻訳日:2021-08-30 14:11:39 公開日:2021-08-27 |
# 意味的類似性を利用した強化学習による意味コミュニケーション Reinforcement Learning-powered Semantic Communication via Semantic Similarity ( http://arxiv.org/abs/2108.12121v1 ) ライセンス: Link先を確認 | Kun Lu, Rongpeng Li, Xianfu Chen, Zhifeng Zhao, Honggang Zhang | (参考訳) 我々は,ビットレベルの精度を厳格に確保する代わりに,セマンティック情報を保存するための新しいセマンティックコミュニケーション機構を導入する。
既存のジョイント・ソース・チャネル・コーディング(JSCC)手法の欠陥を分析することから、一般的に使用されるビットレベル・メトリクスは重要な意味や構造を捉えるのに脆弱であることを示す。
この問題に対処するために、クロスエントロピーやビットエラー率といった従来のペア化ビットレベルの監視に頼るのではなく、セマンティックな類似性から学習する。
しかし,このようなセマンティックコミュニケーションシステムの開発は,ほとんどのセマンティックメトリクスの非微分可能性やうるさいチャネルからの不安定性を考慮し,非自明な作業である。
これらの課題をさらに解決するために,ポリシー勾配技術を用いてユーザ定義意味測定を同時に最適化し,周囲の雑音環境と自然な方法で対話することのできる強化学習(RL)ベースのソリューションを提案する。
提案手法を,挑戦的なヨーロッパ・パリメントデータセットで検証した。
AWGNと位相不変フェーディングチャネルの両方の実験により,低SNR条件下でのチャネルノイズの処理精度の向上と意味を明らかにする上で,本手法の優位性が確認された。
実験結果とは別に,実生活における超一般化機能とともに,セマンティクスモデルがどのように振る舞うか,さらに詳細に検討する。
学習ベースのjsccタスクにおける新しい手法として、一般化能力を証明するためにrlベースの画像伝達パラダイムを例示し、この新しいトピックを今後の議論に残します。 We introduce a new semantic communication mechanism, whose key idea is to preserve the semantic information instead of strictly securing the bit-level precision. Starting by analyzing the defects of existing joint source channel coding (JSCC) methods, we show that the commonly used bit-level metrics are vulnerable of catching important semantic meaning and structures. To address this problem, we take advantage of learning from semantic similarity, instead of relying on conventional paired bit-level supervisions like cross entropy and bit error rate. However, to develop such a semantic communication system is indeed a nontrivial task, considering the nondifferentiability of most semantic metrics as well as the instability from noisy channels. To further resolve these issues, we put forward a reinforcement learning (RL)-based solution which allows us to simultaneously optimize any user-defined semantic measurement by using the policy gradient technique, and to interact with the surrounding noisy environment in a natural way. We have testified the proposed method in the challenging European-parliament dataset. Experiments on both AWGN and phase-invariant fading channel have confirmed the superiority of our method in revealing the semantic meanings, and better handling the channel noise especially in low-SNR situations. Apart from the experimental results, we further provide an indepth look at how the semantics model behaves, along with its superb generalization ability in real-life examples. As a brand new method in learning-based JSCC tasks, we also exemplify an RL-based image transmission paradigm, both to prove the generalization ability, and to leave this new topic for future discussion. | 翻訳日:2021-08-30 14:11:20 公開日:2021-08-27 |
# 原始二重スパースカーネルマシンの学習 Learning primal-dual sparse kernel machines ( http://arxiv.org/abs/2108.12199v1 ) ライセンス: Link先を確認 | Riikka Huusari, Sahely Bhadra, C\'ecile Capponi, Hachem Kadri, Juho Rousu | (参考訳) 伝統的に、カーネル法は、学習問題の解が再生核ヒルベルト空間(英語版)(rkhs)に写像されたデータの線形結合として得られることを述べるrepresenter定理に依存している。
理論的な観点からはエレガントだが、この定理はアルゴリズムの大規模データセットへの拡張性や学習関数の解釈可能性に対して禁止されている。
本稿では、従来の代表者定理の代わりに、元のデータ空間における前像分解を持つRKHSの解を探索することを提案する。
勾配に基づく最適化手法は入力空間のスパース要素の最適化に重きを置き、原始的および双対的なスパース性を持つカーネルベースモデルを得ることができる。
提案手法の一般化能力をRademacher境界を用いて理論的に正当化する。
実験では,従来のカーネルモデルと同等の精度で,スケーラビリティと解釈性を実証した。 Traditionally, kernel methods rely on the representer theorem which states that the solution to a learning problem is obtained as a linear combination of the data mapped into the reproducing kernel Hilbert space (RKHS). While elegant from theoretical point of view, the theorem is prohibitive for algorithms' scalability to large datasets, and the interpretability of the learned function. In this paper, instead of using the traditional representer theorem, we propose to search for a solution in RKHS that has a pre-image decomposition in the original data space, where the elements don't necessarily correspond to the elements in the training set. Our gradient-based optimisation method then hinges on optimising over possibly sparse elements in the input space, and enables us to obtain a kernel-based model with both primal and dual sparsity. We give theoretical justification on the proposed method's generalization ability via a Rademacher bound. Our experiments demonstrate a better scalability and interpretability with accuracy on par with the traditional kernel-based models. | 翻訳日:2021-08-30 14:10:51 公開日:2021-08-27 |
# 原型的関連性伝播による自己説明モデルの拡張 This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation ( http://arxiv.org/abs/2108.12204v1 ) ライセンス: Link先を確認 | Srishti Gautam, Marina M.-C. H\"ohne, Stine Hansen, Robert Jenssen and Michael Kampffmeyer | (参考訳) 現在の機械学習モデルは、様々な現実世界の問題を解決する上で高い効率性を示している。
しかし、ブラックボックスの性格は、根底にある意思決定戦略の理解とトレーサビリティに大きな課題をもたらす。
治療として、モデルの振る舞いを解釈する多くのポストホックな説明と自己説明法が開発されている。
これらの手法は、モデルによってクラス関連の特徴として学習できるアーティファクトの識別を可能にする。
本研究では,自己説明型ネットワークであるProtoPNetのアーティファクトのスペクトルの存在下での詳細なケーススタディを提供する。
したがって,protopnet の主な欠点,特にその粗さと空間的不正確な説明を特定する。
より正確なモデル認識記述を生成する新しい手法である Prototypeal Relevance Propagation (PRP) を導入することで,これらの制約に対処する。
さらに, クリーンなデータセットを得るために, PRP説明を用いたアーティファクト画像の分離にマルチビュークラスタリング戦略を用いることにより, モデルにおける潜在的なアーティファクト学習を抑制することを提案する。 Current machine learning models have shown high efficiency in solving a wide variety of real-world problems. However, their black box character poses a major challenge for the understanding and traceability of the underlying decision-making strategies. As a remedy, many post-hoc explanation and self-explanatory methods have been developed to interpret the models' behavior. These methods, in addition, enable the identification of artifacts that can be learned by the model as class-relevant features. In this work, we provide a detailed case study of the self-explaining network, ProtoPNet, in the presence of a spectrum of artifacts. Accordingly, we identify the main drawbacks of ProtoPNet, especially, its coarse and spatially imprecise explanations. We address these limitations by introducing Prototypical Relevance Propagation (PRP), a novel method for generating more precise model-aware explanations. Furthermore, in order to obtain a clean dataset, we propose to use multi-view clustering strategies for segregating the artifact images using the PRP explanations, thereby suppressing the potential artifact learning in the models. | 翻訳日:2021-08-30 14:10:36 公開日:2021-08-27 |
# 全国都市大気質予測のためのグループ対応グラフニューラルネットワーク Group-Aware Graph Neural Network for Nationwide City Air Quality Forecasting ( http://arxiv.org/abs/2108.12238v1 ) ライセンス: Link先を確認 | Ling Chen, Jiahui Xu, Binqing Wu, Yuntao Qian, Zhenhong Du, Yansheng Li, Yongjun Zhang | (参考訳) 大気汚染の問題は公衆衛生を脅かす。
大気質予測は、大気質指数を数時間から数日後に提供し、大気汚染を事前に防ぐのに役立つ。
以前の研究は、都市全体の大気質予測に重点を置いており、地理的に遠くて高い相関関係にある都市間の潜在的な依存関係を捉えることが困難である全国的な都市予測問題を解決できない。
本稿では,全国都市空気質予測のための階層モデルであるgagnn(group-aware graph neural network)を提案する。
このモデルは都市間の空間的依存をモデル化するために都市グラフと都市グループグラフを構築する。
GAGNNは、都市間の依存性を発見し、都市グループを生成するために、異なるグループネットワークを導入している。
生成した都市群に基づいてグループ相関符号化モジュールを導入し,それらの相関関係を学習し,都市群間の依存関係を効果的に把握する。
グラフ構築後、GAGNNは、都市と都市グループの依存関係をモデル化するメッセージパッシング機構を実装した。
中国の都市大気質データセットの評価実験により,GAGNNが既存の予測モデルより優れていることが示された。 The problem of air pollution threatens public health. Air quality forecasting can provide the air quality index hours or even days later, which can help the public to prevent air pollution in advance. Previous works focus on citywide air quality forecasting and cannot solve nationwide city forecasting problem, whose difficulties lie in capturing the latent dependencies between geographically distant but highly correlated cities. In this paper, we propose the group-aware graph neural network (GAGNN), a hierarchical model for nationwide city air quality forecasting. The model constructs a city graph and a city group graph to model the spatial and latent dependencies between cities, respectively. GAGNN introduces differentiable grouping network to discover the latent dependencies among cities and generate city groups. Based on the generated city groups, a group correlation encoding module is introduced to learn the correlations between them, which can effectively capture the dependencies between city groups. After the graph construction, GAGNN implements message passing mechanism to model the dependencies between cities and city groups. The evaluation experiments on Chinese city air quality dataset indicate that our GAGNN outperforms existing forecasting models. | 翻訳日:2021-08-30 14:10:18 公開日:2021-08-27 |
# 確率制御のためのアクティブ推論 Active Inference for Stochastic Control ( http://arxiv.org/abs/2108.12245v1 ) ライセンス: Link先を確認 | Aswin Paul, Noor Sajid, Manoj Gopalkrishnan, and Adeel Razi | (参考訳) 能動推論は、直観的(確率的)形式論を前提に、問題を制御するための別のアプローチとして現れた。
しかし、その理論的有用性にもかかわらず、計算の実装は低次元の決定論的設定に限定されている。
本稿では、特に計画中に広範な方針(すなわち行動軌道)空間を評価する必要がある場合に、確率的遷移ダイナミクスを適切にモデル化できないことによるものであることを強調する。
幸いなことに、最近の進歩は有限時間地平線に対する修正計画アルゴリズムを提案する。
本研究は,確率的制御設定における能動推論の有用性を評価するためのものである。
そこで我々は,1)環境確率性,2)遷移ダイナミクスの学習,3)部分可観測性という,従来の風力グリッドワールドタスクをシミュレートする。
本研究は,決定論的および確率的設定において,強化学習と比較して,能動的推論の利点を示す。 Active inference has emerged as an alternative approach to control problems given its intuitive (probabilistic) formalism. However, despite its theoretical utility, computational implementations have largely been restricted to low-dimensional, deterministic settings. This paper highlights that this is a consequence of the inability to adequately model stochastic transition dynamics, particularly when an extensive policy (i.e., action trajectory) space must be evaluated during planning. Fortunately, recent advancements propose a modified planning algorithm for finite temporal horizons. We build upon this work to assess the utility of active inference for a stochastic control setting. For this, we simulate the classic windy grid-world task with additional complexities, namely: 1) environment stochasticity; 2) learning of transition dynamics; and 3) partial observability. Our results demonstrate the advantage of using active inference, compared to reinforcement learning, in both deterministic and stochastic settings. | 翻訳日:2021-08-30 14:09:58 公開日:2021-08-27 |
# 強化学習に基づくフローラインシステムの条件指向メンテナンススケジューリング Reinforcement Learning based Condition-oriented Maintenance Scheduling for Flow Line Systems ( http://arxiv.org/abs/2108.12298v1 ) ライセンス: Link先を確認 | Raphael Lamprecht, Ferdinand Wurst, Marco F. Huber | (参考訳) メンテナンススケジューリングは、計画外の生産停止を防ぐために、多数のメンテナンスタスクとリソースを本番環境に割り当て、スケジュールする必要がある生産領域における複雑な意思決定問題である。
生産システムの動的および異なる条件に適応できるインテリジェントなメンテナンス戦略が必要である。
本稿では,フローラインシステムにおける条件指向メンテナンススケジューリングのための深層強化学習手法を提案する。
報酬モデリングに基づくベンチマークスケジューリングヒューリスティックに対して、異なるポリシーを学習し、分析し、評価する。
学習方針の評価は,強化学習に基づくメンテナンス戦略が,提示したユースケースの要件を満たし,店舗におけるメンテナンススケジューリングに適したことを示す。 Maintenance scheduling is a complex decision-making problem in the production domain, where a number of maintenance tasks and resources has to be assigned and scheduled to production entities in order to prevent unplanned production downtime. Intelligent maintenance strategies are required that are able to adapt to the dynamics and different conditions of production systems. The paper introduces a deep reinforcement learning approach for condition-oriented maintenance scheduling in flow line systems. Different policies are learned, analyzed and evaluated against a benchmark scheduling heuristic based on reward modelling. The evaluation of the learned policies shows that reinforcement learning based maintenance strategies meet the requirements of the presented use case and are suitable for maintenance scheduling in the shop floor. | 翻訳日:2021-08-30 14:09:44 公開日:2021-08-27 |
# 事故予測のための適応クラスタリング手法 An Adaptive Clustering Approach for Accident Prediction ( http://arxiv.org/abs/2108.12308v1 ) ライセンス: Link先を確認 | Rajjat Dadwal, Thorben Funke, Elena Demidova | (参考訳) 交通事故予測はモビリティ領域において重要なタスクである。
最先端の事故予測アプローチは、静的および均一なグリッドベースの地理空間集約に基づいており、粒度予測の能力を制限する。
この性質は市中心部のような複雑な地域で特に問題となる。
このような領域では、グリッドセルは異なる性質を持つサブリージョンを含むことができ、さらに実際の事故発生領域をグリッドセル間で任意に分割することができる。
本稿では,グリッド成長アルゴリズムに基づく新しい事故予測手法であるAdaptive Clustering Accident Prediction (ACAP)を提案する。
ACAPは観測された空間的事故分布に適応的なクラスタリングを適用し、時間的・事故関連・地域的特徴の埋め込みを行い、予測精度を高める。
本稿では,ドイツの3都市における実世界の事故データセットを用いたACAP手法の有効性を示す。
acapは,空間的アグリゲーションを基盤となる時空間事象の分布に適応することにより,f1-scoreにおける複合領域の事故予測性能を2~3ポイント向上させる。
我々のグリッド成長アプローチは、クラスタリングベースのベースラインを平均F1スコアで4%上回ります。 Traffic accident prediction is a crucial task in the mobility domain. State-of-the-art accident prediction approaches are based on static and uniform grid-based geospatial aggregations, limiting their capability for fine-grained predictions. This property becomes particularly problematic in more complex regions such as city centers. In such regions, a grid cell can contain subregions with different properties; furthermore, an actual accident-prone region can be split across grid cells arbitrarily. This paper proposes Adaptive Clustering Accident Prediction (ACAP) - a novel accident prediction method based on a grid growing algorithm. ACAP applies adaptive clustering to the observed geospatial accident distribution and performs embeddings of temporal, accident-related, and regional features to increase prediction accuracy. We demonstrate the effectiveness of the proposed ACAP method using open real-world accident datasets from three cities in Germany. We demonstrate that ACAP improves the accident prediction performance for complex regions by 2-3 percent points in F1-score by adapting the geospatial aggregation to the distribution of the underlying spatio-temporal events. Our grid growing approach outperforms the clustering-based baselines by four percent points in terms of F1-score on average. | 翻訳日:2021-08-30 14:09:33 公開日:2021-08-27 |
# 物理インフォームド畳み込み自己エンコーダによる準ゲオゾフィック方程式の非線形モデル次数削減の検討 Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic Equations through a Physics-Informed Convolutional Autoencoder ( http://arxiv.org/abs/2108.12344v1 ) ライセンス: Link先を確認 | Rachel Cooper, Andrey A. Popov, Adrian Sandu | (参考訳) 還元次数モデリング(ROM)は、少ない自由度で重要な力学特性を捉える安価なサロゲートにより、現実世界のプロセスの複雑な物理モデルに近似する手法の分野である。
固有直交分解(POD)のような伝統的なROM技術は、スペクトル上の一連の特徴に対する力学の線形射影に焦点を当てている。
本稿では,データから学習した低次元多様体上にシステムダイナミクスの非線形投影を行うオートエンコーダ(AE)を用いたROMの構築について検討する。
このアプローチでは、畳み込みニューラルネットワーク(CNN)を使用して、スペクトルではなく空間的特徴を学習し、物理情報(PI)コスト関数を使用して時間的特徴も捉える。
準地政学方程式を用いて検討した結果,PIコスト関数は空間再構成に有効であるが,空間的特徴はスペクトル特性よりは弱く,機械学習によるROMの構築には新しい非標準手法が不可欠であることがわかった。 Reduced order modeling (ROM) is a field of techniques that approximates complex physics-based models of real-world processes by inexpensive surrogates that capture important dynamical characteristics with a smaller number of degrees of freedom. Traditional ROM techniques such as proper orthogonal decomposition (POD) focus on linear projections of the dynamics onto a set of spectral features. In this paper we explore the construction of ROM using autoencoders (AE) that perform nonlinear projections of the system dynamics onto a low dimensional manifold learned from data. The approach uses convolutional neural networks (CNN) to learn spatial features as opposed to spectral, and utilize a physics informed (PI) cost function in order to capture temporal features as well. Our investigation using the quasi-geostrophic equations reveals that while the PI cost function helps with spatial reconstruction, spatial features are less powerful than spectral features, and that construction of ROMs through machine learning-based methods requires significant investigation into novel non-standard methodologies. | 翻訳日:2021-08-30 14:09:13 公開日:2021-08-27 |
# 群衆軌道品質評価のための知覚的検証基準 A Perceptually-Validated Metric for Crowd Trajectory Quality Evaluation ( http://arxiv.org/abs/2108.12346v1 ) ライセンス: Link先を確認 | Beatriz Cabrero Daniel, Ricardo Marques, Ludovic Hoyet, Julien Pettr\'e and Josep Blat | (参考訳) 群衆をシミュレーションするには、非常に多数の軌道を制御する必要があり、通常、適切なパラメータ値を見つける必要がある群集運動アルゴリズムを用いて実行される。
シミュレーション手法におけるパラメトリック値と結果として得られる軌道の品質との関係について,知覚実験または実際の群衆軌道との比較により検討した。
本稿では,両戦略を統合する。
軌道実在論の知覚に影響を与える最も有意義な特徴を捉えながら、参照データから抽象化する品質指標 qf が提案されている。
qfは、軌道の複数の個別、局所、大域的性質に基づくコスト関数を重み付け、結合する。
これらの軌跡の特徴は文献および専門家へのインタビューから選ばれる。
知覚された軌道品質を捉えるためのQFの能力を検証するために,自動品質スコアと非熟練ユーザとの高整合性を示すオンライン実験を行った。
qfのさらなる有用性を示すために,パラメータチューニングアプリケーションにおいて,文字の独立な軌跡を出力する任意のパラメトリックな微小群衆シミュレーションモデルをチューニングできる。
調整群集運動モデルの学習パラメータは、QFの項の重み付けに用いられた基準データの影響を保っている。 Simulating crowds requires controlling a very large number of trajectories and is usually performed using crowd motion algorithms for which appropriate parameter values need to be found. The study of the relation between parametric values for simulation techniques and the quality of the resulting trajectories has been studied either through perceptual experiments or by comparison with real crowd trajectories. In this paper, we integrate both strategies. A quality metric, QF, is proposed to abstract from reference data while capturing the most salient features that affect the perception of trajectory realism. QF weights and combines cost functions that are based on several individual, local and global properties of trajectories. These trajectory features are selected from the literature and from interviews with experts. To validate the capacity of QF to capture perceived trajectory quality, we conduct an online experiment that demonstrates the high agreement between the automatic quality score and non-expert users. To further demonstrate the usefulness of QF, we use it in a data-free parameter tuning application able to tune any parametric microscopic crowd simulation model that outputs independent trajectories for characters. The learnt parameters for the tuned crowd motion model maintain the influence of the reference data which was used to weight the terms of QF. | 翻訳日:2021-08-30 14:08:54 公開日:2021-08-27 |
# 電気自動車充電ステーション稼働予測のための深部情報融合 Deep Information Fusion for Electric Vehicle Charging Station Occupancy Forecasting ( http://arxiv.org/abs/2108.12352v1 ) ライセンス: Link先を確認 | Ashutosh Sao, Nicolas Tempelmeier, Elena Demidova | (参考訳) 電気自動車の増加に伴い、充電ステーションの占有率の正確な予測は、信頼性の高い車両充電を可能にするために不可欠である。
本稿では、充電ステーションの占有率を効果的に予測する新しいDep Fusion of Dynamic and Static Information Model(DFDS)を提案する。
我々は、特定の充電ステーションパターンを学習するために、日中の平均占有状況などの静的情報を利用する。
このような静的データを,前回の充電ステーションの占有状況や日時や平日などの時間情報を反映した動的情報で補足する。
我々のモデルは動的および静的な情報を効率的に融合し、正確な予測を容易にする。
我々は、2020年8月から2020年12月にかけて、ドイツで593の充電ステーションを含む実世界のデータセットで提案モデルを評価する。
実験の結果,DFDSはF1スコア平均で3.45ポイント向上した。 With an increasing number of electric vehicles, the accurate forecasting of charging station occupation is crucial to enable reliable vehicle charging. This paper introduces a novel Deep Fusion of Dynamic and Static Information model (DFDS) to effectively forecast the charging station occupation. We exploit static information, such as the mean occupation concerning the time of day, to learn the specific charging station patterns. We supplement such static data with dynamic information reflecting the preceding charging station occupation and temporal information such as daytime and weekday. Our model efficiently fuses dynamic and static information to facilitate accurate forecasting. We evaluate the proposed model on a real-world dataset containing 593 charging stations in Germany, covering August 2020 to December 2020. Our experiments demonstrate that DFDS outperforms the baselines by 3.45 percent points in F1-score on average. | 翻訳日:2021-08-30 14:08:35 公開日:2021-08-27 |
# NLPを用いたログ埋め込みによる悪意あるサイバー行動のエンド・ツー・エンド異常検出 End-To-End Anomaly Detection for Identifying Malicious Cyber Behavior through NLP-Based Log Embeddings ( http://arxiv.org/abs/2108.12276v1 ) ライセンス: Link先を確認 | Andrew Golczynski and John A. Emanuello | (参考訳) ルールベースのIDS(侵入検知システム)はより堅牢なニューラルIDSに置き換えられており、サイバーセキュリティの分野で大きな可能性を秘めている。
しかし、これらのMLアプローチは、異常なサイバー活動の発見と完全に関連する方法で入力をベクトル化する能力に欠けるアドホックな特徴工学技術に依存し続けている。
企業コンピュータネットワークにおける潜在的悪意のある行動を特定するために,nlpに触発されたコンポーネントを用いたエンド・ツー・エンドの深層フレームワークを提案する。
また,最近リリースされたDARPA OpTCデータセットに対して,この手法の有効性を示す。 Rule-based IDS (intrusion detection systems) are being replaced by more robust neural IDS, which demonstrate great potential in the field of Cybersecurity. However, these ML approaches continue to rely on ad-hoc feature engineering techniques, which lack the capacity to vectorize inputs in ways that are fully relevant to the discovery of anomalous cyber activity. We propose a deep end-to-end framework with NLP-inspired components for identifying potentially malicious behaviors on enterprise computer networks. We also demonstrate the efficacy of this technique on the recently released DARPA OpTC data set. | 翻訳日:2021-08-30 14:07:41 公開日:2021-08-27 |
# 自己監督型音声事前学習におけるテキスト注入 Injecting Text in Self-Supervised Speech Pretraining ( http://arxiv.org/abs/2108.12226v1 ) ライセンス: Link先を確認 | Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhuvana Ramabhadran, Gary Wang, Pedro Moreno | (参考訳) 自動音声認識(ASR)のための自己教師付き事前訓練は、様々な成功度を示している。
本稿では,音声とテキストの2つの異なるモダリティから事前学習中の表現を共同学習することを提案する。
提案手法であるtts4pretrainは,合成音声から派生した言語・語彙表現と自己スーパービジョンにおけるコントラスト学習のパワーを補完する。
音声エンコーダにおける語彙学習は、事前訓練中に対照的な損失を伴う追加のシーケンス損失項によって実施される。
本手法は, 単語誤り率(WER)を, wav2vec2.0のみを事前訓練した最先端のベースライン上で10%削減できることを実証する。
提案手法は,書き起こし音声の欠如を補う効果的な戦略としても機能し,ami会議の書き起こしタスクにおいて,5000時間の書き起こし音声とわずか100時間の書き起こし音声のパフォーマンスを効果的に一致させる。
最後に、従来の事前学習よりも、社内音声検索タスクで最大15%のWER削減を実証する。
テキストをエンコーダプリトレーニングに組み込むことは、より大きな言語モデルやドメイン内言語モデルに補完するものであり、結果として、werの相対的な削減が6%増える。 Self-supervised pretraining for Automated Speech Recognition (ASR) has shown varied degrees of success. In this paper, we propose to jointly learn representations during pretraining from two different modalities: speech and text. The proposed method, tts4pretrain complements the power of contrastive learning in self-supervision with linguistic/lexical representations derived from synthesized speech, effectively learning from untranscribed speech and unspoken text. Lexical learning in the speech encoder is enforced through an additional sequence loss term that is coupled with contrastive loss during pretraining. We demonstrate that this novel pretraining method yields Word Error Rate (WER) reductions of 10% relative on the well-benchmarked, Librispeech task over a state-of-the-art baseline pretrained with wav2vec2.0 only. The proposed method also serves as an effective strategy to compensate for the lack of transcribed speech, effectively matching the performance of 5000 hours of transcribed speech with just 100 hours of transcribed speech on the AMI meeting transcription task. Finally, we demonstrate WER reductions of up to 15% on an in-house Voice Search task over traditional pretraining. Incorporating text into encoder pretraining is complimentary to rescoring with a larger or in-domain language model, resulting in additional 6% relative reduction in WER. | 翻訳日:2021-08-30 14:07:32 公開日:2021-08-27 |
# 高品質参照データを持たない横走査ソナー画像の深部雑音化法 Deep Denoising Method for Side Scan Sonar Images without High-quality Reference Data ( http://arxiv.org/abs/2108.12083v1 ) ライセンス: Link先を確認 | Xiaoteng Zhou, Changli Yu, Xin Yuan, Citong Luo | (参考訳) サイドスキャンソナー(SSS)によって測定された海底画像は、自律型水中車両(AUV)を用いた深海探査の過程で必要な視覚的データである。
海底の地形を鮮明に反映することはできたが、通常複雑で激しい騒音を伴う。
本稿では,1つのノイズSS画像を用いて,高品質な参照データを必要としないSSS画像のディープデノイング手法を提案する。
従来の人工フィルタと比較すると、ディープデノナイジング法には明らかな利点がある。
実海底SSS画像の遮音実験を行い, 提案手法は画像品質と細部損失を最小限に抑えながら, SSS画像のノイズを効果的に低減できることを示した。 Subsea images measured by the side scan sonars (SSSs) are necessary visual data in the process of deep-sea exploration by using the autonomous underwater vehicles (AUVs). They could vividly reflect the topography of the seabed, but usually accompanied by complex and severe noise. This paper proposes a deep denoising method for SSS images without high-quality reference data, which uses one single noise SSS image to perform self-supervised denoising. Compared with the classical artificially designed filters, the deep denoising method shows obvious advantages. The denoising experiments are performed on the real seabed SSS images, and the results demonstrate that our proposed method could effectively reduce the noise on the SSS image while minimizing the image quality and detail loss. | 翻訳日:2021-08-30 14:06:53 公開日:2021-08-27 |
# DAE-GAN:テキスト対画像合成のための動的アスペクト対応GAN DAE-GAN: Dynamic Aspect-aware GAN for Text-to-Image Synthesis ( http://arxiv.org/abs/2108.12141v1 ) ライセンス: Link先を確認 | Shulan Ruan, Yong Zhang, Kun Zhang, Yanbo Fan, Fan Tang, Qi Liu, Enhong Chen | (参考訳) テキストから画像への合成(text-to-image synthesis)とは、与えられたテキスト記述から画像を生成することを指す。
従来の方法では通常、文埋め込みで初期画像を生成し、細粒度な単語埋め込みで洗練する。
著しい進歩にもかかわらず、テキストに含まれる「検査」情報(例えば赤い目)は、「何かの特定の部分または特徴」を描写する単語ではなく、複数の単語を参照しており、しばしば無視されるため、画像の詳細を合成するのに非常に役立つ。
テキストと画像の合成におけるアスペクト情報のより良い利用方法はまだ未解決の課題である。
この問題に対処するために,文レベル,単語レベル,アスペクトレベルを含む複数の粒度からテキスト情報を包括的に表現する動的アスペクト・アワーン(DAE-GAN)を提案する。
さらに,人間の学習行動に触発されて,参加するグローバルリファインメント(agr)モジュールとアスペクトアウェアローカルリファインメント(alr)モジュールを交互に採用する,新たな画像リファインメントのためのアスペクトアウェア動的リレーダ(adr)を開発した。
AGRは単語レベルの埋め込みを利用して、以前生成されたイメージをグローバルに拡張する一方、ALRはアスペクトレベルの埋め込みを用いて局所的な視点から画像の詳細を洗練する。
最後に、対応するロス関数は、異なるレベルでテキストイメージのセマンティック一貫性を保証するように設計されている。
CUB-200とCOCOの2つのよく研究され、公開されているデータセットに対する大規模な実験は、我々の方法の優越性と合理性を示している。 Text-to-image synthesis refers to generating an image from a given text description, the key goal of which lies in photo realism and semantic consistency. Previous methods usually generate an initial image with sentence embedding and then refine it with fine-grained word embedding. Despite the significant progress, the 'aspect' information (e.g., red eyes) contained in the text, referring to several words rather than a word that depicts 'a particular part or feature of something', is often ignored, which is highly helpful for synthesizing image details. How to make better utilization of aspect information in text-to-image synthesis still remains an unresolved challenge. To address this problem, in this paper, we propose a Dynamic Aspect-awarE GAN (DAE-GAN) that represents text information comprehensively from multiple granularities, including sentence-level, word-level, and aspect-level. Moreover, inspired by human learning behaviors, we develop a novel Aspect-aware Dynamic Re-drawer (ADR) for image refinement, in which an Attended Global Refinement (AGR) module and an Aspect-aware Local Refinement (ALR) module are alternately employed. AGR utilizes word-level embedding to globally enhance the previously generated image, while ALR dynamically employs aspect-level embedding to refine image details from a local perspective. Finally, a corresponding matching loss function is designed to ensure the text-image semantic consistency at different levels. Extensive experiments on two well-studied and publicly available datasets (i.e., CUB-200 and COCO) demonstrate the superiority and rationality of our method. | 翻訳日:2021-08-30 14:06:41 公開日:2021-08-27 |
# coco distillnet : 病理学的胃癌分画のためのクロスレイヤー相関蒸留ネットワーク CoCo DistillNet: a Cross-layer Correlation Distillation Network for Pathological Gastric Cancer Segmentation ( http://arxiv.org/abs/2108.12173v1 ) ライセンス: Link先を確認 | Wenxuan Zou, Muyi Sun | (参考訳) 近年,深層畳み込みニューラルネットワークは,病理画像分割において大きな進歩を遂げている。
しかし、病理画像分割は、高パフォーマンスネットワークが一般により多くの計算資源とストレージを必要とするジレンマと遭遇する。
この現象は、病的画像の固有の高分解能のため、実場面での高精度ネットワークの雇用を制限する。
この問題を解決するために,病理組織学的胃癌セグメンテーションのためのクロスレイヤー相関(CoCo)知識蒸留ネットワークであるCoCo DistillNetを提案する。
知識蒸留 - 複雑ネットワークからの知識伝達によるコンパクトネットワークの性能向上を目的とした一般的な技術。
具体的には,各層間のチャネル混合空間類似性の相関をモデル化し,その知識を教師ネットワークから非学習学生ネットワークに伝達する。
また, 逆蒸留 (ad) と呼ばれる蒸留手順をさらに促進するために, 逆蒸留戦略を利用する。
さらに,教師ネットワークにおける知識パラフレーズの促進のために,教師なしパラフレーズモジュール (PM) を用いて訓練の安定化を図る。
その結果,CoCo DistillNetによる胃癌分離データセットに対する広範な実験により,最先端のパフォーマンスを実現することができた。 In recent years, deep convolutional neural networks have made significant advances in pathology image segmentation. However, pathology image segmentation encounters with a dilemma in which the higher-performance networks generally require more computational resources and storage. This phenomenon limits the employment of high-accuracy networks in real scenes due to the inherent high-resolution of pathological images. To tackle this problem, we propose CoCo DistillNet, a novel Cross-layer Correlation (CoCo) knowledge distillation network for pathological gastric cancer segmentation. Knowledge distillation, a general technique which aims at improving the performance of a compact network through knowledge transfer from a cumbersome network. Concretely, our CoCo DistillNet models the correlations of channel-mixed spatial similarity between different layers and then transfers this knowledge from a pre-trained cumbersome teacher network to a non-trained compact student network. In addition, we also utilize the adversarial learning strategy to further prompt the distilling procedure which is called Adversarial Distillation (AD). Furthermore, to stabilize our training procedure, we make the use of the unsupervised Paraphraser Module (PM) to boost the knowledge paraphrase in the teacher network. As a result, extensive experiments conducted on the Gastric Cancer Segmentation Dataset demonstrate the prominent ability of CoCo DistillNet which achieves state-of-the-art performance. | 翻訳日:2021-08-30 14:06:11 公開日:2021-08-27 |
# 自動車レーダデータにおける高速ルールベースクラッタ検出 Fast Rule-Based Clutter Detection in Automotive Radar Data ( http://arxiv.org/abs/2108.12224v1 ) ライセンス: Link先を確認 | Johannes Kopp, Dominik Kellner, Aldi Piroli, Klaus Dietmayer | (参考訳) 自動車用レーダセンサーは、不必要なクラッタやゴースト検出を多く出力し、その位置や速度はセンサーの視野内の実際の物体とは一致しない。
これは、オブジェクトの検出や追跡といった環境認識手法に重大な課題をもたらす。
特に問題なのは、複数の連続測定でグループや同様の場所で発生する乱雑な検出である。
本稿では,そのような誤検出を識別する新しいアルゴリズムを提案する。
主に、クラッタにつながる特定の一般的な波伝播経路のモデル化に基づいている。
特に、明示的にカバーされた3つの効果は、車またはトラックの下部の反射、センサーが装着された車両と他の物体の間を行き来する信号、およびスペクトル反射によるマルチパス伝搬である。
後者はしばしばガードレール、コンクリート壁、または同様の反射面の近くで起こる。
これらの効果は、理論上、および対応するクラッタ検出を同定する方法の両方について記述される。
識別は、単一のセンサ計測のみから発生する検出を解析することによって行われる。
最終アルゴリズムは実際の都市外交通の記録に基づいて評価される。
ラベル付けには半自動プロセスが使用される。
その結果は、パフォーマンスと非常に低い実行時間の両方において有望である。
通常、クラッタの大部分は発見されるが、実際のオブジェクトに対応する検出の割合は、アルゴリズムによって誤って分類される。 Automotive radar sensors output a lot of unwanted clutter or ghost detections, whose position and velocity do not correspond to any real object in the sensor's field of view. This poses a substantial challenge for environment perception methods like object detection or tracking. Especially problematic are clutter detections that occur in groups or at similar locations in multiple consecutive measurements. In this paper, a new algorithm for identifying such erroneous detections is presented. It is mainly based on the modeling of specific commonly occurring wave propagation paths that lead to clutter. In particular, the three effects explicitly covered are reflections at the underbody of a car or truck, signals traveling back and forth between the vehicle on which the sensor is mounted and another object, and multipath propagation via specular reflection. The latter often occurs near guardrails, concrete walls or similar reflective surfaces. Each of these effects is described both theoretically and regarding a method for identifying the corresponding clutter detections. Identification is done by analyzing detections generated from a single sensor measurement only. The final algorithm is evaluated on recordings of real extra-urban traffic. For labeling, a semi-automatic process is employed. The results are promising, both in terms of performance and regarding the very low execution time. Typically, a large part of clutter is found, while only a small ratio of detections corresponding to real objects are falsely classified by the algorithm. | 翻訳日:2021-08-30 14:05:50 公開日:2021-08-27 |
# ガラスフリー3Dディスプレイ用ハイブリッド積層多重層とフーリエ異方性層に基づく新しい階層型光フィールド符号化方式 A Novel Hierarchical Light Field Coding Scheme Based on Hybrid Stacked Multiplicative Layers and Fourier Disparity Layers for Glasses-Free 3D Displays ( http://arxiv.org/abs/2108.12399v1 ) ライセンス: Link先を確認 | Joshitha Ravishankar and Mansi Sharma | (参考訳) 本稿では,低位乗算層とフーリエ分散層の透過パターンに基づく光場の新しい階層的符号化方式を提案する。
提案手法では,畳み込みニューラルネットワークを用いて異なる走査順序に最適化した光フィールドビューサブセットの乗算層を同定する。
提案手法は,異なる走査パターンのサブセットから得られた乗法層内の隠れた低ランク構造を利用する。
乗算層における空間冗長性は、クリロフ部分空間上の異なる階数で低ランク近似を行うことで効率的に除去することができる。
HEVC符号化により、近似層間のビュー内およびビュー間冗長性をさらに除去する。
次に、選択された階層順に基づいて近似光場の第1の部分集合からフーリエ異性層表現を構築する。
その後のビューサブセットは、精度を向上して表現を反復的に洗練するフーリエ差分層をモデル化することによって合成される。
提案手法の重要な利点は,光場における空間的および時間的冗長性だけでなく,近接するサブアパーチャ画像間の固有類似性を,予測順序の異なる水平方向と垂直方向の両方において効率的に利用することである。
さらに、このスキームは単一の統合システム内のデコーダで複数のビットレートの範囲を実現するのに柔軟である。
提案手法の圧縮性能は実光場上で解析される。
我々はかなりのビットレートの節約を達成し,良好な光電界再構成品質を維持した。 This paper presents a novel hierarchical coding scheme for light fields based on transmittance patterns of low-rank multiplicative layers and Fourier disparity layers. The proposed scheme identifies multiplicative layers of light field view subsets optimized using a convolutional neural network for different scanning orders. Our approach exploits the hidden low-rank structure in the multiplicative layers obtained from the subsets of different scanning patterns. The spatial redundancies in the multiplicative layers can be efficiently removed by performing low-rank approximation at different ranks on the Krylov subspace. The intra-view and inter-view redundancies between approximated layers are further removed by HEVC encoding. Next, a Fourier disparity layer representation is constructed from the first subset of the approximated light field based on the chosen hierarchical order. Subsequent view subsets are synthesized by modeling the Fourier disparity layers that iteratively refine the representation with improved accuracy. The critical advantage of the proposed hybrid layered representation and coding scheme is that it utilizes not just spatial and temporal redundancies in light fields but efficiently exploits intrinsic similarities among neighboring sub-aperture images in both horizontal and vertical directions as specified by different predication orders. In addition, the scheme is flexible to realize a range of multiple bitrates at the decoder within a single integrated system. The compression performance of the proposed scheme is analyzed on real light fields. We achieved substantial bitrate savings and maintained good light field reconstruction quality. | 翻訳日:2021-08-30 14:05:32 公開日:2021-08-27 |
# マスク型音声強調におけるタスク認識のワープ要因 Task-aware Warping Factors in Mask-based Speech Enhancement ( http://arxiv.org/abs/2108.12128v1 ) ライセンス: Link先を確認 | Qiongqiong Wang, Kong Aik Lee, Takafumi Koshinaka, Koji Okabe, Hitoshi Yamamoto | (参考訳) 本稿では,マスクベース音声強調(SE)における2つのタスク認識ワープ要素の利用を提案する。
1つは、トレーニングフェーズにおける音声保守とノイズ除去のバランスを制御し、もう1つはテストフェーズにおける特定の下流タスクに適用されるse電力を制御する。
我々の意図は、SEシステムが音声品質を改善するために訓練された問題は、同じオブジェクトを共有しないため、自動話者検証(ASV)や自動音声認識(ASR)など、他の下流タスクの改善に失敗することが多いことである。
提案手法を任意のマスクベースのse法に適用することは容易であり、単一のseシステムがタスクに依存しないトレーニングなしで複数のタスクを処理できる。
提案手法の有効性は,ASV評価のためのSITWデータセットとASRのためのLibriSpeechデータセット,および0-20dBの音声品質評価において確認されている。
一つのseが最適な性能を達成するためには、異なる反り値が必要であることを示す。
3つのタスク。
タスク依存のワープ要因を用いることで、音声品質は84.7%向上し、ASVは22.4%削減、ASRは52.2%低下した。
また, ASV用VoxCeleb-1テストセットと, ASV用LibriSpeech開発クリーンセットと品質評価用VoxCeleb-1テストセットに対して, タスク依存のワープ係数の有効性をクロスバリデーションした。
提案手法は極めて有効であり,実用化が容易である。 This paper proposes the use of two task-aware warping factors in mask-based speech enhancement (SE). One controls the balance between speech-maintenance and noise-removal in training phases, while the other controls SE power applied to specific downstream tasks in testing phases. Our intention is to alleviate the problem that SE systems trained to improve speech quality often fail to improve other downstream tasks, such as automatic speaker verification (ASV) and automatic speech recognition (ASR), because they do not share the same objects. It is easy to apply the proposed dual-warping factors approach to any mask-based SE method, and it allows a single SE system to handle multiple tasks without task-dependent training. The effectiveness of our proposed approach has been confirmed on the SITW dataset for ASV evaluation and the LibriSpeech dataset for ASR and speech quality evaluations of 0-20dB. We show that different warping values are necessary for a single SE to achieve optimal performance w.r.t. the three tasks. With the use of task-dependent warping factors, speech quality was improved by an 84.7% PESQ increase, ASV had a 22.4% EER reduction, and ASR had a 52.2% WER reduction, on 0dB speech. The effectiveness of the task-dependent warping factors were also cross-validated on VoxCeleb-1 test set for ASV and LibriSpeech dev-clean set for ASV and quality evaluations. The proposed method is highly effective and easy to apply in practice. | 翻訳日:2021-08-30 14:05:10 公開日:2021-08-27 |
# 大規模オンラインサービスシステムのためのグラフに基づくインシデント集約 Graph-based Incident Aggregation for Large-Scale Online Service Systems ( http://arxiv.org/abs/2108.12179v1 ) ライセンス: Link先を確認 | Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xuemin Wen, Xiao Ling, Yongqiang Yang, Michael R. Lyu | (参考訳) オンラインサービスシステムが複雑さとボリュームの面で成長を続けるにつれ、サービスインシデントの管理方法が企業の収益とユーザ信頼に大きく影響します。
カスケード効果のため、クラウド障害は、依存サービスやデバイスからの圧倒的なインシデントが発生することが多い。
効率的なインシデント管理を追求するためには、関連するインシデントを迅速に集約して問題の範囲を狭める必要がある。
本稿では,クラウド障害のカスケードグラフ上でのグラフ表現学習に基づくインシデント集約フレームワークGRLIAを提案する。
表現ベクトルは、インシデント間のトポロジ的および時間的相関を同時に符号化することができる、教師なしかつ統一された方法で各インシデントに対して学習される。
これにより、オンラインインシデント集約に容易に利用することができる。
特に、相関関係をより正確に学習するために、きめ細かいシステム監視データ、すなわちキーパフォーマンス指標(KPI)を活用して、障害のカスケード影響の完全な範囲を回復しようと試みる。
提案フレームワークは,Huawei Cloudの大規模オンラインサービスシステムから収集した実世界のインシデントデータを用いて評価する。
実験の結果,GRLIAは有効であり,既存手法よりも優れていた。
さらに,我々のフレームワークは工業的実践に成功している。 As online service systems continue to grow in terms of complexity and volume, how service incidents are managed will significantly impact company revenue and user trust. Due to the cascading effect, cloud failures often come with an overwhelming number of incidents from dependent services and devices. To pursue efficient incident management, related incidents should be quickly aggregated to narrow down the problem scope. To this end, in this paper, we propose GRLIA, an incident aggregation framework based on graph representation learning over the cascading graph of cloud failures. A representation vector is learned for each unique type of incident in an unsupervised and unified manner, which is able to simultaneously encode the topological and temporal correlations among incidents. Thus, it can be easily employed for online incident aggregation. In particular, to learn the correlations more accurately, we try to recover the complete scope of failures' cascading impact by leveraging fine-grained system monitoring data, i.e., Key Performance Indicators (KPIs). The proposed framework is evaluated with real-world incident data collected from a large-scale online service system of Huawei Cloud. The experimental results demonstrate that GRLIA is effective and outperforms existing methods. Furthermore, our framework has been successfully deployed in industrial practice. | 翻訳日:2021-08-30 14:04:15 公開日:2021-08-27 |
# 人間対機械:オートMLと人間専門家のフィッシング検出における役割 Man versus Machine: AutoML and Human Experts' Role in Phishing Detection ( http://arxiv.org/abs/2108.12193v1 ) ライセンス: Link先を確認 | Rizka Purwanto, Arindam Pal, Alan Blair, Sanjay Jha | (参考訳) 機械学習(ML)はここ数年で急速に発展し、フィッシング検出など幅広いタスクに利用されてきた。
しかし、効果的なMLベースの検出システムを構築することは簡単な作業ではなく、関連するドメインに関する知識を持つデータサイエンティストを必要とする。
近年、Automated Machine Learning (AutoML)フレームワークは注目を集めており、機械学習モデルを構築する上で、非MLの専門家が利用できるようになっている。
これは、automlが人間のデータサイエンティストが達成した結果を上回ることができるかどうかという興味深い疑問をもたらす。
本稿では,10種類のフィッシングデータセットにおける6つの最先端オートmlフレームワークのパフォーマンスを比較し,自動mlベースのモデルが手作業による機械学習モデルを上回るかどうかを検証した。
以上の結果から,automlベースのモデルは,複雑な分類タスクにおいて,特に特徴が判別的でないデータセットや重複したクラスや相対的に高次な非線形性を持つデータセットにおいて,手作業で開発した機械学習モデルよりも優れることが示された。
また、教師付き分類問題のみをサポートしているため、ラベル付きデータの必要性、AutoMLベースのモデルを漸進的に更新できないため、AutoMLフレームワークを使用した実際のフィッシング検出システムの構築にも課題が残っている。
これは、フィッシング検出パイプラインのループにおいて、フィッシングとサイバーセキュリティに関する知識を持つ専門家が依然として不可欠であることを示している。 Machine learning (ML) has developed rapidly in the past few years and has successfully been utilized for a broad range of tasks, including phishing detection. However, building an effective ML-based detection system is not a trivial task, and requires data scientists with knowledge of the relevant domain. Automated Machine Learning (AutoML) frameworks have received a lot of attention in recent years, enabling non-ML experts in building a machine learning model. This brings to an intriguing question of whether AutoML can outperform the results achieved by human data scientists. Our paper compares the performances of six well-known, state-of-the-art AutoML frameworks on ten different phishing datasets to see whether AutoML-based models can outperform manually crafted machine learning models. Our results indicate that AutoML-based models are able to outperform manually developed machine learning models in complex classification tasks, specifically in datasets where the features are not quite discriminative, and datasets with overlapping classes or relatively high degrees of non-linearity. Challenges also remain in building a real-world phishing detection system using AutoML frameworks due to the current support only on supervised classification problems, leading to the need for labeled data, and the inability to update the AutoML-based models incrementally. This indicates that experts with knowledge in the domain of phishing and cybersecurity are still essential in the loop of the phishing detection pipeline. | 翻訳日:2021-08-30 14:03:55 公開日:2021-08-27 |
# enel: グラフ伝搬を用いた分散データフロージョブのコンテキスト対応動的スケーリング Enel: Context-Aware Dynamic Scaling of Distributed Dataflow Jobs using Graph Propagation ( http://arxiv.org/abs/2108.12211v1 ) ライセンス: Link先を確認 | Dominik Scheinert, Houkun Zhu, Lauritz Thamsen, Morgan K. Geldenhuys, Jonathan Will, Alexander Acker, Odej Kao | (参考訳) SparkやFlinkといった分散データフローシステムは、スケーラブルなデータ分析にクラスタを使用することができる。
実行時予測モデルは、最初に指定された適切なクラスタリソースを選択するために使用できるが、データフロージョブの実際の実行時パフォーマンスは、いくつかの要因に依存し、時間とともに変化する。
しかし、多くの状況において、動的スケーリングは、大きなパフォーマンスのばらつきにもかかわらず、定式化されたランタイムターゲットを満たすために使用できる。
本稿では,データフロージョブをモデル化するために属性グラフ上でメッセージの伝搬を利用して,効率的な再スケーリング決定の導出を可能にする,新しい動的スケーリング手法であるEnelを提案する。
このために、enelは各実行コンテキストをキャプチャする記述的プロパティを取り入れ、個々のデータフロータスクからの統計を考慮し、ジョブグラフを通じて予測を伝搬し、最終的に最適化された新しいスケールアウトを見つける。
4つの反復的なsparkジョブによるenelの評価からは、効果的なリスケーリングアクションを特定し、例えばノード障害に反応し、さまざまな実行コンテキストで再利用することが可能であることが分かりました。 Distributed dataflow systems like Spark and Flink enable the use of clusters for scalable data analytics. While runtime prediction models can be used to initially select appropriate cluster resources given target runtimes, the actual runtime performance of dataflow jobs depends on several factors and varies over time. Yet, in many situations, dynamic scaling can be used to meet formulated runtime targets despite significant performance variance. This paper presents Enel, a novel dynamic scaling approach that uses message propagation on an attributed graph to model dataflow jobs and, thus, allows for deriving effective rescaling decisions. For this, Enel incorporates descriptive properties that capture the respective execution context, considers statistics from individual dataflow tasks, and propagates predictions through the job graph to eventually find an optimized new scale-out. Our evaluation of Enel with four iterative Spark jobs shows that our approach is able to identify effective rescaling actions, reacting for instance to node failures, and can be reused across different execution contexts. | 翻訳日:2021-08-30 14:03:31 公開日:2021-08-27 |
# 信号処理と機械学習における再現可能な研究ガイド A Guide to Reproducible Research in Signal Processing and Machine Learning ( http://arxiv.org/abs/2108.12383v1 ) ライセンス: Link先を確認 | Joseph Shenouda and Waheed U. Bajwa | (参考訳) 再現性は、計算研究者と信号処理と機械学習研究コミュニティの間で広く研究されている、増大する問題である。
しかし、信号処理と機械学習の研究の状況が変化し、再現可能な実験を作成する上で新たな障害と目に見えない課題が生まれる。
これらの新たな課題により、ほとんどの実験は、不可能ではないにせよ、独立した研究者によって再現されることが困難になっている。
2016年にNature誌が行った調査によると、研究者の50%が自身の実験を再現できなかった。
再現性に関する問題は文献、特にシグナル処理コミュニティ内で議論されているが、ほとんどの研究者にとって、研究の第一の責任を伴わずに再現性を確保するためのベストプラクティスは、いまだに不明である。
研究者は実験を再現可能であることの重要性を理解しているが、明確な標準とツールが欠如しているため、ほとんどの研究室で優れた再現性プラクティスを組み込むことは困難であると感じている。
我々は,信号処理研究者に対して,再現可能な計算実験を行う上で,多くの障害を軽減するための実用的なツールと戦略を提示することを目的としている。 Reproducibility is a growing problem that has been extensively studied among computational researchers and within the signal processing and machine learning research community. However, with the changing landscape of signal processing and machine learning research come new obstacles and unseen challenges in creating reproducible experiments. Due to these new challenges most experiments have become difficult, if not impossible, to be reproduced by an independent researcher. In 2016 a survey conducted by the journal Nature found that 50% of researchers were unable to reproduce their own experiments. While the issue of reproducibility has been discussed in the literature and specifically within the signal processing community, it is still unclear to most researchers what are the best practices to ensure reproducibility without impinging on their primary responsibility of conducting research. We feel that although researchers understand the importance of making experiments reproducible, the lack of a clear set of standards and tools makes it difficult to incorporate good reproducibility practices in most labs. It is in this regard that we aim to present signal processing researchers with a set of practical tools and strategies that can help mitigate many of the obstacles to producing reproducible computational experiments. | 翻訳日:2021-08-30 14:02:56 公開日:2021-08-27 |
# SynthIA: SDOとHinodeを仮想観測器に融合したストークスベクトルの合成逆近似 SynthIA: A Synthetic Inversion Approximation for the Stokes Vector Fusing SDO and Hinode into a Virtual Observatory ( http://arxiv.org/abs/2108.12421v1 ) ライセンス: Link先を確認 | Richard E.L. Higgins, David F. Fouhey, Spiro K. Antiochos, Graham Barnes, Mark C.M. Cheung, J. Todd Hoeksema, KD Leka, Yang Liu, Peter W. Schuck, Tamas I. Gombosi | (参考訳) NASAのSolar Dynamics Observatory(SDO)とJAXA/NASAのHinodeミッションには、光球磁場を測定するために設計された分光偏光計がある。
SDOのHelioseismic and Magnetic Imager (HMI) はフルディスクの高ケイデンスと良好な空間分解能データ取得を強調し、HinodeのSolar Optical Telescope Spectro-Polarimeter (SOT-SP) は、視野の制限と時間周期の遅いコストで高空間分解能とスペクトルサンプリングに焦点を当てている。
この研究はSynthIA(Synthetic Inversion Approximation)と呼ばれるディープラーニングシステムを導入し、それぞれの楽器の特徴を最大限に捉え、両方のミッションを強化する。
我々は、SynthIAを用いて、高スペクトル分解能Hinode/SOT-SPパイプラインからの磁気グラムを模倣する新しい磁気グラムデータ製品SynodeP(Synthetic Hinode Pipeline)を作成し、フルディスク、高ケイデンス、低スペクトル分解能SDO/HMIストークス観測から導出する。
ホールドアウトデータの結果、SynodePは現在のSDO/HMIパイプラインでは提供されていない磁気充填率を含むHinode/SOT-SPパイプラインインバージョンと良好な一致を示した。
SynodePはさらに、SDO/HMIデータに存在する24時間振動の大きさを減少させる。
SynthIAの一般性を示すために、HMIデータのSDO/AIAデータとサブセットを入力として使用し、Hinode/SOT-SPインバージョンと観測回数、時間的アーティファクトとのトレードオフを可能にする。
シンシアの一般化の可能性とその宇宙気象モデルへの応用について考察する。
この研究は、ミシガン大学のNASA Heliophysics DRIVE Science Center(SOLSTICE)の一部で、NASA 80NSSC20K0600Eを認可し、オープンソース化される。 Both NASA's Solar Dynamics Observatory (SDO) and the JAXA/NASA Hinode mission include spectropolarimetric instruments designed to measure the photospheric magnetic field. SDO's Helioseismic and Magnetic Imager (HMI) emphasizes full-disk high-cadence and good spatial resolution data acquisition while Hinode's Solar Optical Telescope Spectro-Polarimeter (SOT-SP) focuses on high spatial resolution and spectral sampling at the cost of a limited field of view and slower temporal cadence. This work introduces a deep-learning system named SynthIA (Synthetic Inversion Approximation), that can enhance both missions by capturing the best of each instrument's characteristics. We use SynthIA to produce a new magnetogram data product, SynodeP (Synthetic Hinode Pipeline), that mimics magnetograms from the higher spectral resolution Hinode/SOT-SP pipeline, but is derived from full-disk, high-cadence, and lower spectral-resolution SDO/HMI Stokes observations. Results on held-out data show that SynodeP has good agreement with the Hinode/SOT-SP pipeline inversions, including magnetic fill fraction, which is not provided by the current SDO/HMI pipeline. SynodeP further shows a reduction in the magnitude of the 24-hour oscillations present in the SDO/HMI data. To demonstrate SynthIA's generality, we show the use of SDO/AIA data and subsets of the HMI data as inputs, which enables trade-offs between fidelity to the Hinode/SOT-SP inversions, number of observations used, and temporal artifacts. We discuss possible generalizations of SynthIA and its implications for space weather modeling. This work is part of the NASA Heliophysics DRIVE Science Center (SOLSTICE) at the University of Michigan under grant NASA 80NSSC20K0600E, and will be open-sourced. | 翻訳日:2021-08-30 14:02:38 公開日:2021-08-27 |
# バッファ状態情報を用いた無線リソース割り当てのための深層強化学習 Deep Reinforcement Learning for Wireless Resource Allocation Using Buffer State Information ( http://arxiv.org/abs/2108.12198v1 ) ライセンス: Link先を確認 | Eike-Manuel Bansbach, Victor Eliachevitch, Laurent Schmalen | (参考訳) 無線ネットワークにおいて,データレートや遅延要件の異なるユーザ機器(UE)の数が増加するにつれて,直交周波数分割多重アクセス(OFDMA)のリソース割り当ての問題が表面化している。
特に、UE間の公平性を保ちながらシステムデータレートを最大化する際、様々な要件が非凸最適化問題を引き起こす。
本稿では,深部強化学習(DRL)を用いた非凸最適化問題を解く。
ダウンリンクOFDMAシナリオに対してメディアアクセス制御スケジューリングを行うDRLエージェントの概要,訓練,評価を行う。
エージェントのトレーニングを開始するために,模倣学習を導入する。
スケジューリング性能向上のため、基地局におけるフルバッファ状態情報(例えば、)
パケット年齢、パケットサイズ)が考慮される。
入力特徴圧縮、パケットシャッフル、エイジキャップなどの技術はエージェントの性能をさらに向上させる。
我々はNokiaの無線スイートを使用してエージェントをトレーニングし、評価し、異なるベンチマークエージェントに対して評価する。
私たちのエージェントはベンチマークエージェントよりも明らかに優れています。 As the number of user equipments (UEs) with various data rate and latency requirements increases in wireless networks, the resource allocation problem for orthogonal frequency-division multiple access (OFDMA) becomes challenging. In particular, varying requirements lead to a non-convex optimization problem when maximizing the systems data rate while preserving fairness between UEs. In this paper, we solve the non-convex optimization problem using deep reinforcement learning (DRL). We outline, train and evaluate a DRL agent, which performs the task of media access control scheduling for a downlink OFDMA scenario. To kickstart training of our agent, we introduce mimicking learning. For improvement of scheduling performance, full buffer state information at the base station (e.g. packet age, packet size) is taken into account. Techniques like input feature compression, packet shuffling and age capping further improve the performance of the agent. We train and evaluate our agents using Nokia's wireless suite and evaluate against different benchmark agents. We show that our agents clearly outperform the benchmark agents. | 翻訳日:2021-08-30 14:00:57 公開日:2021-08-27 |
# 空間信号のための多重仮説テストフレームワーク Multiple Hypothesis Testing Framework for Spatial Signals ( http://arxiv.org/abs/2108.12314v1 ) ライセンス: Link先を確認 | Martin G\"olz and Abdelhak M. Zoubir and Visa Koivunen | (参考訳) 空間的に興味深い、異なる、または逆向きの行動の領域を特定する問題は、分散マルチセンサーシステムを含む多くの実用的な応用に固有のものである。
本研究では,複数の仮説テストから派生した一般フレームワークを開発し,そのような領域を同定する。
監視環境に対して離散空間格子を仮定する。
予め特定されたレベルで偽発見率を制御しながら、異なる仮説に関連する空間格子点を同定する。
測定は大規模センサネットワークを用いて行われる。
本稿では,モーメントのスペクトル法に基づいて局所的な偽発見率を推定する新しいデータ駆動手法を提案する。
本手法は基礎となる物理現象の特定の空間伝播モデルと無関係である。
これは局所的な要約統計に広く適用可能な密度モデルに依存している。
センサー間では、位置は補間された局所的な偽発見率に基づいて異なる仮説に関連する領域に割り当てられる。
本手法の利点は,電波の空間伝播への応用によって示される。 The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves. | 翻訳日:2021-08-30 14:00:42 公開日:2021-08-27 |
# fast-pca:分散主成分分析のための高速高精度アルゴリズム FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis ( http://arxiv.org/abs/2108.12373v1 ) ライセンス: Link先を確認 | Arpita Gang and Waheed U. Bajwa | (参考訳) 主成分分析(PCA)は、機械学習の世界における基本的なデータ前処理ツールである。
PCAは次元還元に還元されることが多いが、PCAの目的は実際には2倍の次元還元と特徴学習である。
さらに、現代のデータセットの次元とサンプルサイズは、集中型PCAソリューションを使用不能にしている。
そこで本研究では,データサンプルを任意接続ネットワーク内のノードに分散する場合に,pcaの問題を再検討する。
分散PCAのいくつかのソリューションは、目的の機能学習部分を見落としているか、通信オーバーヘッドによって効率が悪く、正確な収束保証が欠如している。
本稿では,FAST-PCA (Fast and exAct diSTributed PCA) と呼ばれる分散PCAアルゴリズムを提案する。
提案アルゴリズムは通信の点で効率的であり,次元の減少につながる主成分や非相関な特徴に線形かつ正確に収束することが証明できる。
我々の主張は実験結果によってさらに裏付けられている。 Principal Component Analysis (PCA) is a fundamental data preprocessing tool in the world of machine learning. While PCA is often reduced to dimension reduction, the purpose of PCA is actually two-fold: dimension reduction and feature learning. Furthermore, the enormity of the dimensions and sample size in the modern day datasets have rendered the centralized PCA solutions unusable. In that vein, this paper reconsiders the problem of PCA when data samples are distributed across nodes in an arbitrarily connected network. While a few solutions for distributed PCA exist those either overlook the feature learning part of the purpose, have communication overhead making them inefficient and/or lack exact convergence guarantees. To combat these aforementioned issues, this paper proposes a distributed PCA algorithm called FAST-PCA (Fast and exAct diSTributed PCA). The proposed algorithm is efficient in terms of communication and can be proved to converge linearly and exactly to the principal components that lead to dimension reduction as well as uncorrelated features. Our claims are further supported by experimental results. | 翻訳日:2021-08-30 14:00:31 公開日:2021-08-27 |
# 量子サブガウス平均推定器 Quantum Sub-Gaussian Mean Estimator ( http://arxiv.org/abs/2108.12172v1 ) ライセンス: Link先を確認 | Yassine Hamoudi | (参考訳) 本稿では,量子計算の出力として得られる実数値確率変数の平均を推定する新しい量子アルゴリズムを提案する。
我々の推定器は、古典i.i.d.の数よりも、ほぼ最適の二次速度を達成する。
準ガウス誤差率で重み付き分布の平均を推定するために必要なサンプル。
この結果は、重み付け分布 [BHMT02,BDGT11] に最適でない平均推定問題や、分散 [Hein02,Mon15,HM19] に関する事前情報を必要とする(対数因子まで)初期の研究である。
応用として,入力確率変数の変動係数に最適依存した$(\epsilon,\delta)$近似問題に対する新しい量子アルゴリズムを求める。 We present a new quantum algorithm for estimating the mean of a real-valued random variable obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier works on the mean estimation problem that were not optimal for heavy-tailed distributions [BHMT02,BDGT11], or that require prior information on the variance [Hein02,Mon15,HM19]. As an application, we obtain new quantum algorithms for the $(\epsilon,\delta)$-approximation problem with an optimal dependence on the coefficient of variation of the input random variable. | 翻訳日:2021-08-30 14:00:15 公開日:2021-08-27 |
# (参考訳) YOLOP:パンオプティカル・ドライビング・パーセプションで一度だけ見る YOLOP: You Only Look Once for Panoptic Driving Perception ( http://arxiv.org/abs/2108.11250v3 ) ライセンス: CC BY 4.0 | Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang | (参考訳) パノプティクス駆動認識システムは、自律運転の重要な部分である。
高精度かつリアルタイムな知覚システムは、運転中に合理的な判断を行うことで車両を補助することができる。
本稿では,交通物体検出,乾燥領域分割,車線検出を同時に行うパノプティカル駆動認識ネットワーク(YOLOP)を提案する。
特徴抽出のための1つのエンコーダと、特定のタスクを処理する3つのデコーダで構成されている。
私たちのモデルは、BDD100Kデータセットで非常によく機能し、正確性とスピードの観点から、3つのタスクすべてで最先端の処理を実現しています。
また,複合学習におけるマルチタスク学習モデルの有効性を,アブレイティブスタディを通して検証する。
私たちの知る限りでは、この3つの視覚知覚タスクをjetson tx2(23 fps)組み込みデバイス上でリアルタイムに処理し、優れた精度を維持することができる最初の作業です。
さらなる研究を容易にするため、ソースコードと事前訓練されたモデルはhttps://github.com/hustvl/YOLOP.comでリリースされる。 A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network (YOLOP) to perform traffic object detection, drivable area segmentation and lane detection simultaneously. It is composed of one encoder for feature extraction and three decoders to handle the specific tasks. Our model performs extremely well on the challenging BDD100K dataset, achieving state-of-the-art on all three tasks in terms of accuracy and speed. Besides, we verify the effectiveness of our multi-task learning model for joint training via ablative studies. To our best knowledge, this is the first work that can process these three visual perception tasks simultaneously in real-time on an embedded device Jetson TX2(23 FPS) and maintain excellent accuracy. To facilitate further research, the source codes and pre-trained models will be released at https://github.com/hustvl/YOLOP. | 翻訳日:2021-08-30 11:55:54 公開日:2021-08-27 |
# (参考訳) 時空間表現学習のためのシフトチャンクトランス Shifted Chunk Transformer for Spatio-Temporal Representational Learning ( http://arxiv.org/abs/2108.11575v2 ) ライセンス: CC BY-SA 4.0 | Xuefan Zha, Wentao Zhu, Tingxun Lv, Sen Yang, Ji Liu | (参考訳) 時空間表現学習は、アクション認識、ビデオオブジェクトセグメンテーション、アクション予測など様々な分野で広く採用されている。
従来の時空間表現学習アプローチでは、主にフレーム内およびフレーム間の特徴を学ぶためにConvNetまたはLSTMのようなシーケンシャルモデルを用いていた。
近年,自然言語処理(nlp)や画像分類などの研究においてトランスフォーマモデルが優勢となっている。
しかし、Pure-Transformerベースの時空間学習は、小さなパッチからきめ細かい特徴を抽出するために、メモリと計算に不当にコストがかかる可能性がある。
トレーニングの難易度に取り組み,時空間学習の強化を図るため,純粋自己着脱ブロックを有するシフトチャンクトランスを構築した。
最近のNLPにおける効率的なTransformer設計を活用して、このシフトチャンクTransformerは、局所的な小さなパッチからグローバルなビデオクリップまで、階層的な時空間的特徴を学習することができる。
移動自着は複雑なフレーム間分散を効果的にモデル化することができる。
さらに,Transformerに基づくクリップエンコーダを構築し,長期の時間依存性をモデル化する。
シフトチャンク変換器における各成分およびハイパーパラメータの精度を評価するための徹底的なアブレーション研究を行い、Kinetics-400, Kinetics-600, UCF101, HMDB51における従来の最先端手法よりも優れていた。
コードとトレーニングされたモデルがリリースされる。 Spatio-temporal representational learning has been widely adopted in various fields such as action recognition, video object segmentation, and action anticipation. Previous spatio-temporal representational learning approaches primarily employ ConvNets or sequential models,e.g., LSTM, to learn the intra-frame and inter-frame features. Recently, Transformer models have successfully dominated the study of natural language processing (NLP), image classification, etc. However, the pure-Transformer based spatio-temporal learning can be prohibitively costly on memory and computation to extract fine-grained features from a tiny patch. To tackle the training difficulty and enhance the spatio-temporal learning, we construct a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent efficient Transformer design in NLP, this shifted chunk Transformer can learn hierarchical spatio-temporal features from a local tiny patch to a global video clip. Our shifted self-attention can also effectively model complicated inter-frame variances. Furthermore, we build a clip encoder based on Transformer to model long-term temporal dependencies. We conduct thorough ablation studies to validate each component and hyper-parameters in our shifted chunk Transformer, and it outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600, UCF101, and HMDB51. Code and trained models will be released. | 翻訳日:2021-08-30 11:42:09 公開日:2021-08-27 |
# LayoutReader: 読み出し順序検出のためのテキストとレイアウトの事前トレーニング LayoutReader: Pre-training of Text and Layout for Reading Order Detection ( http://arxiv.org/abs/2108.11591v2 ) ライセンス: Link先を確認 | Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, Furu Wei | (参考訳) 読み出し順序検出は、視覚的にリッチな文書(レシートやフォームなど)を理解するための基盤となる。
残念ながら、大規模なデータセットをアノテートするには労力がかかりすぎるため、高度なディープラーニングモデルを活用する既存の作業はありませんでした。
WORD文書の読み込み順序はXMLメタデータに埋め込まれているのに対し、WORD文書をPDFや画像に変換するのは容易である。
そこで我々は,様々な文書タイプをカバーする50万の文書画像に対して,読み出し順序,テキスト,レイアウト情報を含むベンチマークデータセットであるreadingbankを構築した。
この最初の大規模データセットは、読み出し順序検出のためのディープニューラルネットワークの力を解き放つ。
特に,提案するLayoutReaderは,セック2seqモデルを用いて,読み出し順序予測のためのテキストとレイアウト情報をキャプチャする。
読み出し順序検出においてほぼ完全に動作し,実験結果のテキスト行の順序付けにおいて,オープンソースのOCRエンジンと商用OCRエンジンの両方を大幅に改善する。
データセットとモデルは \url{https://aka.ms/layoutreader} でリリースします。 Reading order detection is the cornerstone to understanding visually-rich documents (e.g., receipts and forms). Unfortunately, no existing work took advantage of advanced deep learning models because it is too laborious to annotate a large enough dataset. We observe that the reading order of WORD documents is embedded in their XML metadata; meanwhile, it is easy to convert WORD documents to PDFs or images. Therefore, in an automated manner, we construct ReadingBank, a benchmark dataset that contains reading order, text, and layout information for 500,000 document images covering a wide spectrum of document types. This first-ever large-scale dataset unleashes the power of deep neural networks for reading order detection. Specifically, our proposed LayoutReader captures the text and layout information for reading order prediction using the seq2seq model. It performs almost perfectly in reading order detection and significantly improves both open-source and commercial OCR engines in ordering text lines in their results in our experiments. We will release the dataset and model at \url{https://aka.ms/layoutreader}. | 翻訳日:2021-08-30 11:22:56 公開日:2021-08-27 |
# 名前付きエンティティ認識におけるラベル付きエンティティ問題に対する否定サンプリングの再考 Rethinking Negative Sampling for Unlabeled Entity Problem in Named Entity Recognition ( http://arxiv.org/abs/2108.11607v2 ) ライセンス: Link先を確認 | Yangming Li, Lemao Liu, Shuming Shi | (参考訳) 多くの状況(例えば遠隔監視)において、ラベルなしのエンティティ問題は名前付きエンティティ認識(NER)モデルの性能を著しく低下させる。
近年, 負のサンプリングに基づく顕著なアプローチによってこの問題に対処されている。
本研究では,この方向で2つの研究を行う。
まず、なぜ負のサンプリングが理論的にも経験的にも成功するのかを分析する。
名前付きエンティティはデータセットにおいて非常に疎いという観測に基づいて、長い文において、サンプル負にラベルのないエンティティを含まない確率が高いという理論的保証を示す。
合成データセットのミスサンプリングテストは、実際に保証を検証しました。
第二に、ハードネガティブをマイニングし、さらにミスアンプ率を下げるために、負サンプリングのための重み付き適応サンプリング分布を提案する。
合成データセットと注釈付きデータセットの実験により,ロバスト性および有効性において負のサンプリングを著しく改善することが示された。
私たちはまた、現実世界のデータセットで新たな最先端の結果を得ました。 In many situations (e.g., distant supervision), unlabeled entity problem seriously degrades the performances of named entity recognition (NER) models. Recently, this issue has been well addressed by a notable approach based on negative sampling. In this work, we perform two studies along this direction. Firstly, we analyze why negative sampling succeeds both theoretically and empirically. Based on the observation that named entities are highly sparse in datasets, we show a theoretical guarantee that, for a long sentence, the probability of containing no unlabeled entities in sampled negatives is high. Missampling tests on synthetic datasets have verified our guarantee in practice. Secondly, to mine hard negatives and further reduce missampling rates, we propose a weighted and adaptive sampling distribution for negative sampling. Experiments on synthetic datasets and well-annotated datasets show that our method significantly improves negative sampling in robustness and effectiveness. We also have achieved new state-of-the-art results on real-world datasets. | 翻訳日:2021-08-30 11:22:40 公開日:2021-08-27 |
# 単一ドメインの一般化のための多様性の学習 Learning to Diversify for Single Domain Generalization ( http://arxiv.org/abs/2108.11726v2 ) ライセンス: Link先を確認 | Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, Mahsa Baktashmotlagh | (参考訳) ドメイン一般化(DG)は、複数のソース(トレーニング)ドメインで訓練されたモデルを、分散的に異なるターゲット(テスト)ドメインに一般化することを目的としている。
本稿では、複数のソースドメインの可用性を厳密に要求する従来のDGとは対照的に、より現実的で困難なシナリオである単一ドメイン一般化(Single-DG)について考察する。
このシナリオでは、限られた多様性は、目に見えないターゲット領域上のモデルの一般化を阻害する可能性がある。
この問題に対処するため,本稿では,原点と相補的な多様な分布の画像を合成することにより,モデルの一般化能力を高めるためのスタイル補完モジュールを提案する。
より具体的には、生成したサンプルとソースの相互情報(MI)のトラクタブルな上限を適用して、2段階の最適化を反復的に実施する。(1) サンプルペアごとにMI上限近似を最小化することにより、生成した画像はソースサンプルから多様化せざるを得なくなり、(2) 同一セマンティックカテゴリのサンプル間でMIを最大化し、ネットワークが多様なスタイルの画像から識別的特徴を学習するのに役立つ。
3つのベンチマークデータセットに対する大規模な実験は、最先端のシングルDGメソッドを最大25.14%上回るアプローチの優位性を示している。 Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain. In contrast to the conventional DG that strictly requires the availability of multiple source domains, this paper considers a more realistic yet challenging scenario, namely Single Domain Generalization (Single-DG), where only one source domain is available for training. In this scenario, the limited diversity may jeopardize the model generalization on unseen target domains. To tackle this problem, we propose a style-complement module to enhance the generalization power of the model by synthesizing images from diverse distributions that are complementary to the source ones. More specifically, we adopt a tractable upper bound of mutual information (MI) between the generated and source samples and perform a two-step optimization iteratively: (1) by minimizing the MI upper bound approximation for each sample pair, the generated images are forced to be diversified from the source samples; (2) subsequently, we maximize the MI between the samples from the same semantic category, which assists the network to learn discriminative features from diverse-styled images. Extensive experiments on three benchmark datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods by up to 25.14%. | 翻訳日:2021-08-30 11:22:25 公開日:2021-08-27 |